![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdet0 | Structured version Visualization version GIF version |
Description: The determinant of the zero matrix (of dimension greater 0!) is 0. (Contributed by AV, 17-Aug-2019.) (Revised by AV, 3-Jul-2022.) |
Ref | Expression |
---|---|
mdet0.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
mdet0.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mdet0.z | ⊢ 𝑍 = (0g‘𝐴) |
mdet0.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
mdet0 | ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) → (𝐷‘𝑍) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4342 | . . 3 ⊢ (𝑁 ≠ ∅ ↔ ∃𝑖 𝑖 ∈ 𝑁) | |
2 | crngring 20176 | . . . . . . . . . 10 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
3 | 2 | anim1ci 615 | . . . . . . . . 9 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
4 | 3 | adantr 480 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
5 | mdet0.z | . . . . . . . . 9 ⊢ 𝑍 = (0g‘𝐴) | |
6 | mdet0.a | . . . . . . . . . 10 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
7 | mdet0.0 | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑅) | |
8 | 6, 7 | mat0op 22308 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘𝐴) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 )) |
9 | 5, 8 | eqtrid 2779 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑍 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 )) |
10 | 4, 9 | syl 17 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 𝑍 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 )) |
11 | 10 | fveq2d 6895 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝐷‘𝑍) = (𝐷‘(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 ))) |
12 | ifid 4564 | . . . . . . . . . 10 ⊢ if(𝑥 = 𝑖, 0 , 0 ) = 0 | |
13 | 12 | eqcomi 2736 | . . . . . . . . 9 ⊢ 0 = if(𝑥 = 𝑖, 0 , 0 ) |
14 | 13 | a1i 11 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 0 = if(𝑥 = 𝑖, 0 , 0 )) |
15 | 14 | mpoeq3dv 7493 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 ) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑖, 0 , 0 ))) |
16 | 15 | fveq2d 6895 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝐷‘(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 )) = (𝐷‘(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑖, 0 , 0 )))) |
17 | mdet0.d | . . . . . . 7 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
18 | eqid 2727 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
19 | simpll 766 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ CRing) | |
20 | simpr 484 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin) | |
21 | 20 | adantr 480 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 𝑁 ∈ Fin) |
22 | ringmnd 20174 | . . . . . . . . . . . 12 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | |
23 | 2, 22 | syl 17 | . . . . . . . . . . 11 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Mnd) |
24 | 23 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑅 ∈ Mnd) |
25 | 18, 7 | mndidcl 18700 | . . . . . . . . . 10 ⊢ (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅)) |
26 | 24, 25 | syl 17 | . . . . . . . . 9 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 0 ∈ (Base‘𝑅)) |
27 | 26 | adantr 480 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 0 ∈ (Base‘𝑅)) |
28 | 27 | 3ad2ant1 1131 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 0 ∈ (Base‘𝑅)) |
29 | simpr 484 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
30 | 17, 18, 7, 19, 21, 28, 29 | mdetr0 22494 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝐷‘(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑖, 0 , 0 ))) = 0 ) |
31 | 11, 16, 30 | 3eqtrd 2771 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝐷‘𝑍) = 0 ) |
32 | 31 | ex 412 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁 → (𝐷‘𝑍) = 0 )) |
33 | 32 | exlimdv 1929 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (∃𝑖 𝑖 ∈ 𝑁 → (𝐷‘𝑍) = 0 )) |
34 | 1, 33 | biimtrid 241 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑁 ≠ ∅ → (𝐷‘𝑍) = 0 )) |
35 | 34 | 3impia 1115 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) → (𝐷‘𝑍) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2935 ∅c0 4318 ifcif 4524 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 Fincfn 8955 Basecbs 17171 0gc0g 17412 Mndcmnd 18685 Ringcrg 20164 CRingccrg 20165 Mat cmat 22294 maDet cmdat 22473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-addf 11209 ax-mulf 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-xor 1506 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8838 df-pm 8839 df-ixp 8908 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-sup 9457 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-xnn0 12567 df-z 12581 df-dec 12700 df-uz 12845 df-rp 12999 df-fz 13509 df-fzo 13652 df-seq 13991 df-exp 14051 df-hash 14314 df-word 14489 df-lsw 14537 df-concat 14545 df-s1 14570 df-substr 14615 df-pfx 14645 df-splice 14724 df-reverse 14733 df-s2 14823 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-starv 17239 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-hom 17248 df-cco 17249 df-0g 17414 df-gsum 17415 df-prds 17420 df-pws 17422 df-mre 17557 df-mrc 17558 df-acs 17560 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-mhm 18731 df-submnd 18732 df-efmnd 18812 df-grp 18884 df-minusg 18885 df-sbg 18886 df-mulg 19015 df-subg 19069 df-ghm 19159 df-gim 19204 df-cntz 19259 df-oppg 19288 df-symg 19313 df-pmtr 19388 df-psgn 19437 df-cmn 19728 df-abl 19729 df-mgp 20066 df-rng 20084 df-ur 20113 df-ring 20166 df-cring 20167 df-oppr 20262 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-dvr 20329 df-rhm 20400 df-subrng 20472 df-subrg 20497 df-drng 20615 df-lmod 20734 df-lss 20805 df-sra 21047 df-rgmod 21048 df-cnfld 21267 df-zring 21360 df-zrh 21416 df-dsmm 21653 df-frlm 21668 df-mat 22295 df-mdet 22474 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |