| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdet0 | Structured version Visualization version GIF version | ||
| Description: The determinant of the zero matrix (of dimension greater 0!) is 0. (Contributed by AV, 17-Aug-2019.) (Revised by AV, 3-Jul-2022.) |
| Ref | Expression |
|---|---|
| mdet0.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| mdet0.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mdet0.z | ⊢ 𝑍 = (0g‘𝐴) |
| mdet0.0 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| mdet0 | ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) → (𝐷‘𝑍) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4302 | . . 3 ⊢ (𝑁 ≠ ∅ ↔ ∃𝑖 𝑖 ∈ 𝑁) | |
| 2 | crngring 20165 | . . . . . . . . . 10 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 3 | 2 | anim1ci 616 | . . . . . . . . 9 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 4 | 3 | adantr 480 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
| 5 | mdet0.z | . . . . . . . . 9 ⊢ 𝑍 = (0g‘𝐴) | |
| 6 | mdet0.a | . . . . . . . . . 10 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 7 | mdet0.0 | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑅) | |
| 8 | 6, 7 | mat0op 22335 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘𝐴) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 )) |
| 9 | 5, 8 | eqtrid 2780 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑍 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 )) |
| 10 | 4, 9 | syl 17 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 𝑍 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 )) |
| 11 | 10 | fveq2d 6832 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝐷‘𝑍) = (𝐷‘(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 ))) |
| 12 | ifid 4515 | . . . . . . . . . 10 ⊢ if(𝑥 = 𝑖, 0 , 0 ) = 0 | |
| 13 | 12 | eqcomi 2742 | . . . . . . . . 9 ⊢ 0 = if(𝑥 = 𝑖, 0 , 0 ) |
| 14 | 13 | a1i 11 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 0 = if(𝑥 = 𝑖, 0 , 0 )) |
| 15 | 14 | mpoeq3dv 7431 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 ) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑖, 0 , 0 ))) |
| 16 | 15 | fveq2d 6832 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝐷‘(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 )) = (𝐷‘(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑖, 0 , 0 )))) |
| 17 | mdet0.d | . . . . . . 7 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 18 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 19 | simpll 766 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ CRing) | |
| 20 | simpr 484 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin) | |
| 21 | 20 | adantr 480 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 22 | ringmnd 20163 | . . . . . . . . . . . 12 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | |
| 23 | 2, 22 | syl 17 | . . . . . . . . . . 11 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Mnd) |
| 24 | 23 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑅 ∈ Mnd) |
| 25 | 18, 7 | mndidcl 18659 | . . . . . . . . . 10 ⊢ (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅)) |
| 26 | 24, 25 | syl 17 | . . . . . . . . 9 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 0 ∈ (Base‘𝑅)) |
| 27 | 26 | adantr 480 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 0 ∈ (Base‘𝑅)) |
| 28 | 27 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 0 ∈ (Base‘𝑅)) |
| 29 | simpr 484 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
| 30 | 17, 18, 7, 19, 21, 28, 29 | mdetr0 22521 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝐷‘(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑖, 0 , 0 ))) = 0 ) |
| 31 | 11, 16, 30 | 3eqtrd 2772 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝐷‘𝑍) = 0 ) |
| 32 | 31 | ex 412 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁 → (𝐷‘𝑍) = 0 )) |
| 33 | 32 | exlimdv 1934 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (∃𝑖 𝑖 ∈ 𝑁 → (𝐷‘𝑍) = 0 )) |
| 34 | 1, 33 | biimtrid 242 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑁 ≠ ∅ → (𝐷‘𝑍) = 0 )) |
| 35 | 34 | 3impia 1117 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) → (𝐷‘𝑍) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ∅c0 4282 ifcif 4474 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 Fincfn 8875 Basecbs 17122 0gc0g 17345 Mndcmnd 18644 Ringcrg 20153 CRingccrg 20154 Mat cmat 22323 maDet cmdat 22500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-addf 11092 ax-mulf 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-xnn0 12462 df-z 12476 df-dec 12595 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-hash 14240 df-word 14423 df-lsw 14472 df-concat 14480 df-s1 14506 df-substr 14551 df-pfx 14581 df-splice 14659 df-reverse 14668 df-s2 14757 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-0g 17347 df-gsum 17348 df-prds 17353 df-pws 17355 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-efmnd 18779 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19127 df-gim 19173 df-cntz 19231 df-oppg 19260 df-symg 19284 df-pmtr 19356 df-psgn 19405 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-rhm 20392 df-subrng 20463 df-subrg 20487 df-drng 20648 df-lmod 20797 df-lss 20867 df-sra 21109 df-rgmod 21110 df-cnfld 21294 df-zring 21386 df-zrh 21442 df-dsmm 21671 df-frlm 21686 df-mat 22324 df-mdet 22501 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |