![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdet0 | Structured version Visualization version GIF version |
Description: The determinant of the zero matrix (of dimension greater 0!) is 0. (Contributed by AV, 17-Aug-2019.) (Revised by AV, 3-Jul-2022.) |
Ref | Expression |
---|---|
mdet0.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
mdet0.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mdet0.z | ⊢ 𝑍 = (0g‘𝐴) |
mdet0.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
mdet0 | ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) → (𝐷‘𝑍) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4339 | . . 3 ⊢ (𝑁 ≠ ∅ ↔ ∃𝑖 𝑖 ∈ 𝑁) | |
2 | crngring 20146 | . . . . . . . . . 10 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
3 | 2 | anim1ci 615 | . . . . . . . . 9 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
4 | 3 | adantr 480 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
5 | mdet0.z | . . . . . . . . 9 ⊢ 𝑍 = (0g‘𝐴) | |
6 | mdet0.a | . . . . . . . . . 10 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
7 | mdet0.0 | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑅) | |
8 | 6, 7 | mat0op 22265 | . . . . . . . . 9 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘𝐴) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 )) |
9 | 5, 8 | eqtrid 2776 | . . . . . . . 8 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑍 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 )) |
10 | 4, 9 | syl 17 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 𝑍 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 )) |
11 | 10 | fveq2d 6886 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝐷‘𝑍) = (𝐷‘(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 ))) |
12 | ifid 4561 | . . . . . . . . . 10 ⊢ if(𝑥 = 𝑖, 0 , 0 ) = 0 | |
13 | 12 | eqcomi 2733 | . . . . . . . . 9 ⊢ 0 = if(𝑥 = 𝑖, 0 , 0 ) |
14 | 13 | a1i 11 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 0 = if(𝑥 = 𝑖, 0 , 0 )) |
15 | 14 | mpoeq3dv 7481 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 ) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑖, 0 , 0 ))) |
16 | 15 | fveq2d 6886 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝐷‘(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ 0 )) = (𝐷‘(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑖, 0 , 0 )))) |
17 | mdet0.d | . . . . . . 7 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
18 | eqid 2724 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
19 | simpll 764 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ CRing) | |
20 | simpr 484 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin) | |
21 | 20 | adantr 480 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 𝑁 ∈ Fin) |
22 | ringmnd 20144 | . . . . . . . . . . . 12 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | |
23 | 2, 22 | syl 17 | . . . . . . . . . . 11 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Mnd) |
24 | 23 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑅 ∈ Mnd) |
25 | 18, 7 | mndidcl 18678 | . . . . . . . . . 10 ⊢ (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅)) |
26 | 24, 25 | syl 17 | . . . . . . . . 9 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 0 ∈ (Base‘𝑅)) |
27 | 26 | adantr 480 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 0 ∈ (Base‘𝑅)) |
28 | 27 | 3ad2ant1 1130 | . . . . . . 7 ⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) → 0 ∈ (Base‘𝑅)) |
29 | simpr 484 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → 𝑖 ∈ 𝑁) | |
30 | 17, 18, 7, 19, 21, 28, 29 | mdetr0 22451 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝐷‘(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ if(𝑥 = 𝑖, 0 , 0 ))) = 0 ) |
31 | 11, 16, 30 | 3eqtrd 2768 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ 𝑖 ∈ 𝑁) → (𝐷‘𝑍) = 0 ) |
32 | 31 | ex 412 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁 → (𝐷‘𝑍) = 0 )) |
33 | 32 | exlimdv 1928 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (∃𝑖 𝑖 ∈ 𝑁 → (𝐷‘𝑍) = 0 )) |
34 | 1, 33 | biimtrid 241 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑁 ≠ ∅ → (𝐷‘𝑍) = 0 )) |
35 | 34 | 3impia 1114 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) → (𝐷‘𝑍) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2932 ∅c0 4315 ifcif 4521 ‘cfv 6534 (class class class)co 7402 ∈ cmpo 7404 Fincfn 8936 Basecbs 17149 0gc0g 17390 Mndcmnd 18663 Ringcrg 20134 CRingccrg 20135 Mat cmat 22251 maDet cmdat 22430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-addf 11186 ax-mulf 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-xor 1505 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-ot 4630 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8700 df-map 8819 df-pm 8820 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-sup 9434 df-oi 9502 df-card 9931 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-xnn0 12544 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12976 df-fz 13486 df-fzo 13629 df-seq 13968 df-exp 14029 df-hash 14292 df-word 14467 df-lsw 14515 df-concat 14523 df-s1 14548 df-substr 14593 df-pfx 14623 df-splice 14702 df-reverse 14711 df-s2 14801 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-0g 17392 df-gsum 17393 df-prds 17398 df-pws 17400 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-mhm 18709 df-submnd 18710 df-efmnd 18790 df-grp 18862 df-minusg 18863 df-sbg 18864 df-mulg 18992 df-subg 19046 df-ghm 19135 df-gim 19180 df-cntz 19229 df-oppg 19258 df-symg 19283 df-pmtr 19358 df-psgn 19407 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-cring 20137 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-rhm 20370 df-subrng 20442 df-subrg 20467 df-drng 20585 df-lmod 20704 df-lss 20775 df-sra 21017 df-rgmod 21018 df-cnfld 21235 df-zring 21323 df-zrh 21379 df-dsmm 21616 df-frlm 21631 df-mat 22252 df-mdet 22431 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |