![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmat1opsc | Structured version Visualization version GIF version |
Description: The identity polynomial matrix over a ring represented as operation with "lifted scalars". (Contributed by AV, 16-Nov-2019.) |
Ref | Expression |
---|---|
pmat0opsc.p | β’ π = (Poly1βπ ) |
pmat0opsc.c | β’ πΆ = (π Mat π) |
pmat0opsc.a | β’ π΄ = (algScβπ) |
pmat0opsc.z | β’ 0 = (0gβπ ) |
pmat1opsc.o | β’ 1 = (1rβπ ) |
Ref | Expression |
---|---|
pmat1opsc | β’ ((π β Fin β§ π β Ring) β (1rβπΆ) = (π β π, π β π β¦ if(π = π, (π΄β 1 ), (π΄β 0 )))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmat0opsc.p | . . 3 β’ π = (Poly1βπ ) | |
2 | pmat0opsc.c | . . 3 β’ πΆ = (π Mat π) | |
3 | eqid 2731 | . . 3 β’ (0gβπ) = (0gβπ) | |
4 | eqid 2731 | . . 3 β’ (1rβπ) = (1rβπ) | |
5 | 1, 2, 3, 4 | pmat1op 22419 | . 2 β’ ((π β Fin β§ π β Ring) β (1rβπΆ) = (π β π, π β π β¦ if(π = π, (1rβπ), (0gβπ)))) |
6 | pmat0opsc.a | . . . . . . 7 β’ π΄ = (algScβπ) | |
7 | pmat1opsc.o | . . . . . . 7 β’ 1 = (1rβπ ) | |
8 | 1, 6, 7, 4 | ply1scl1 22036 | . . . . . 6 β’ (π β Ring β (π΄β 1 ) = (1rβπ)) |
9 | 8 | eqcomd 2737 | . . . . 5 β’ (π β Ring β (1rβπ) = (π΄β 1 )) |
10 | pmat0opsc.z | . . . . . . 7 β’ 0 = (0gβπ ) | |
11 | 1, 6, 10, 3 | ply1scl0 22033 | . . . . . 6 β’ (π β Ring β (π΄β 0 ) = (0gβπ)) |
12 | 11 | eqcomd 2737 | . . . . 5 β’ (π β Ring β (0gβπ) = (π΄β 0 )) |
13 | 9, 12 | ifeq12d 4549 | . . . 4 β’ (π β Ring β if(π = π, (1rβπ), (0gβπ)) = if(π = π, (π΄β 1 ), (π΄β 0 ))) |
14 | 13 | adantl 481 | . . 3 β’ ((π β Fin β§ π β Ring) β if(π = π, (1rβπ), (0gβπ)) = if(π = π, (π΄β 1 ), (π΄β 0 ))) |
15 | 14 | mpoeq3dv 7491 | . 2 β’ ((π β Fin β§ π β Ring) β (π β π, π β π β¦ if(π = π, (1rβπ), (0gβπ))) = (π β π, π β π β¦ if(π = π, (π΄β 1 ), (π΄β 0 )))) |
16 | 5, 15 | eqtrd 2771 | 1 β’ ((π β Fin β§ π β Ring) β (1rβπΆ) = (π β π, π β π β¦ if(π = π, (π΄β 1 ), (π΄β 0 )))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 ifcif 4528 βcfv 6543 (class class class)co 7412 β cmpo 7414 Fincfn 8943 0gc0g 17390 1rcur 20076 Ringcrg 20128 algSccascl 21627 Poly1cpl1 21921 Mat cmat 22128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-ofr 7675 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-pm 8827 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-sup 9441 df-oi 9509 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-fzo 13633 df-seq 13972 df-hash 14296 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-hom 17226 df-cco 17227 df-0g 17392 df-gsum 17393 df-prds 17398 df-pws 17400 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-subg 19040 df-ghm 19129 df-cntz 19223 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-subrng 20435 df-subrg 20460 df-lmod 20617 df-lss 20688 df-sra 20931 df-rgmod 20932 df-dsmm 21507 df-frlm 21522 df-ascl 21630 df-psr 21682 df-mpl 21684 df-opsr 21686 df-psr1 21924 df-ply1 21926 df-mamu 22107 df-mat 22129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |