![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > marepvval | Structured version Visualization version GIF version |
Description: Third substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
Ref | Expression |
---|---|
marepvfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marepvfval.b | ⊢ 𝐵 = (Base‘𝐴) |
marepvfval.q | ⊢ 𝑄 = (𝑁 matRepV 𝑅) |
marepvfval.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
Ref | Expression |
---|---|
marepvval | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marepvfval.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | marepvfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
3 | marepvfval.q | . . . . 5 ⊢ 𝑄 = (𝑁 matRepV 𝑅) | |
4 | marepvfval.v | . . . . 5 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
5 | 1, 2, 3, 4 | marepvval0 22423 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑀𝑄𝐶) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) |
6 | 5 | 3adant3 1129 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → (𝑀𝑄𝐶) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) |
7 | 6 | fveq1d 6887 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → ((𝑀𝑄𝐶)‘𝐾) = ((𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))‘𝐾)) |
8 | eqid 2726 | . . 3 ⊢ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗)))) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗)))) | |
9 | eqeq2 2738 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑗 = 𝑘 ↔ 𝑗 = 𝐾)) | |
10 | 9 | ifbid 4546 | . . . 4 ⊢ (𝑘 = 𝐾 → if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗)) = if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗))) |
11 | 10 | mpoeq3dv 7484 | . . 3 ⊢ (𝑘 = 𝐾 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
12 | simp3 1135 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝐾 ∈ 𝑁) | |
13 | 1, 2 | matrcl 22267 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
14 | 13 | simpld 494 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
15 | 14, 14 | jca 511 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
16 | 15 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin)) |
17 | mpoexga 8063 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗))) ∈ V) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗))) ∈ V) |
19 | 8, 11, 12, 18 | fvmptd3 7015 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → ((𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
20 | 7, 19 | eqtrd 2766 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝐾, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ifcif 4523 ↦ cmpt 5224 ‘cfv 6537 (class class class)co 7405 ∈ cmpo 7407 ↑m cmap 8822 Fincfn 8941 Basecbs 17153 Mat cmat 22262 matRepV cmatrepV 22414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-1cn 11170 ax-addcl 11172 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-nn 12217 df-slot 17124 df-ndx 17136 df-base 17154 df-mat 22263 df-marepv 22416 |
This theorem is referenced by: marepveval 22425 marepvcl 22426 1marepvmarrepid 22432 cramerimplem2 22541 |
Copyright terms: Public domain | W3C validator |