Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  marepvval Structured version   Visualization version   GIF version

Theorem marepvval 21170
 Description: Third substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvfval.a 𝐴 = (𝑁 Mat 𝑅)
marepvfval.b 𝐵 = (Base‘𝐴)
marepvfval.q 𝑄 = (𝑁 matRepV 𝑅)
marepvfval.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
Assertion
Ref Expression
marepvval ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝐶,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝐾,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑄(𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem marepvval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 marepvfval.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 marepvfval.b . . . . 5 𝐵 = (Base‘𝐴)
3 marepvfval.q . . . . 5 𝑄 = (𝑁 matRepV 𝑅)
4 marepvfval.v . . . . 5 𝑉 = ((Base‘𝑅) ↑m 𝑁)
51, 2, 3, 4marepvval0 21169 . . . 4 ((𝑀𝐵𝐶𝑉) → (𝑀𝑄𝐶) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
653adant3 1129 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑀𝑄𝐶) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
76fveq1d 6654 . 2 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀𝑄𝐶)‘𝐾) = ((𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))‘𝐾))
8 eqid 2822 . . 3 (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))
9 eqeq2 2834 . . . . 5 (𝑘 = 𝐾 → (𝑗 = 𝑘𝑗 = 𝐾))
109ifbid 4461 . . . 4 (𝑘 = 𝐾 → if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)) = if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗)))
1110mpoeq3dv 7217 . . 3 (𝑘 = 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
12 simp3 1135 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → 𝐾𝑁)
131, 2matrcl 21015 . . . . . . 7 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1413simpld 498 . . . . . 6 (𝑀𝐵𝑁 ∈ Fin)
1514, 14jca 515 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
16153ad2ant1 1130 . . . 4 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
17 mpoexga 7762 . . . 4 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))) ∈ V)
1816, 17syl 17 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))) ∈ V)
198, 11, 12, 18fvmptd3 6773 . 2 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
207, 19eqtrd 2857 1 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114  Vcvv 3469  ifcif 4439   ↦ cmpt 5122  ‘cfv 6334  (class class class)co 7140   ∈ cmpo 7142   ↑m cmap 8393  Fincfn 8496  Basecbs 16474   Mat cmat 21010   matRepV cmatrepV 21160 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7675  df-2nd 7676  df-slot 16478  df-base 16480  df-mat 21011  df-marepv 21162 This theorem is referenced by:  marepveval  21171  marepvcl  21172  1marepvmarrepid  21178  cramerimplem2  21287
 Copyright terms: Public domain W3C validator