MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marepvval Structured version   Visualization version   GIF version

Theorem marepvval 21716
Description: Third substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvfval.a 𝐴 = (𝑁 Mat 𝑅)
marepvfval.b 𝐵 = (Base‘𝐴)
marepvfval.q 𝑄 = (𝑁 matRepV 𝑅)
marepvfval.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
Assertion
Ref Expression
marepvval ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
Distinct variable groups:   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝐶,𝑖,𝑗   𝑖,𝑀,𝑗   𝑖,𝐾,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖,𝑗)   𝑄(𝑖,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem marepvval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 marepvfval.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 marepvfval.b . . . . 5 𝐵 = (Base‘𝐴)
3 marepvfval.q . . . . 5 𝑄 = (𝑁 matRepV 𝑅)
4 marepvfval.v . . . . 5 𝑉 = ((Base‘𝑅) ↑m 𝑁)
51, 2, 3, 4marepvval0 21715 . . . 4 ((𝑀𝐵𝐶𝑉) → (𝑀𝑄𝐶) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
653adant3 1131 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑀𝑄𝐶) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
76fveq1d 6776 . 2 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀𝑄𝐶)‘𝐾) = ((𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))‘𝐾))
8 eqid 2738 . . 3 (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))
9 eqeq2 2750 . . . . 5 (𝑘 = 𝐾 → (𝑗 = 𝑘𝑗 = 𝐾))
109ifbid 4482 . . . 4 (𝑘 = 𝐾 → if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)) = if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗)))
1110mpoeq3dv 7354 . . 3 (𝑘 = 𝐾 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
12 simp3 1137 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → 𝐾𝑁)
131, 2matrcl 21559 . . . . . . 7 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
1413simpld 495 . . . . . 6 (𝑀𝐵𝑁 ∈ Fin)
1514, 14jca 512 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
16153ad2ant1 1132 . . . 4 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin))
17 mpoexga 7918 . . . 4 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))) ∈ V)
1816, 17syl 17 . . 3 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))) ∈ V)
198, 11, 12, 18fvmptd3 6898 . 2 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
207, 19eqtrd 2778 1 ((𝑀𝐵𝐶𝑉𝐾𝑁) → ((𝑀𝑄𝐶)‘𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐾, (𝐶𝑖), (𝑖𝑀𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  ifcif 4459  cmpt 5157  cfv 6433  (class class class)co 7275  cmpo 7277  m cmap 8615  Fincfn 8733  Basecbs 16912   Mat cmat 21554   matRepV cmatrepV 21706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-nn 11974  df-slot 16883  df-ndx 16895  df-base 16913  df-mat 21555  df-marepv 21708
This theorem is referenced by:  marepveval  21717  marepvcl  21718  1marepvmarrepid  21724  cramerimplem2  21833
  Copyright terms: Public domain W3C validator