MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minmar1val0 Structured version   Visualization version   GIF version

Theorem minmar1val0 21777
Description: Second substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.)
Hypotheses
Ref Expression
minmar1fval.a 𝐴 = (𝑁 Mat 𝑅)
minmar1fval.b 𝐵 = (Base‘𝐴)
minmar1fval.q 𝑄 = (𝑁 minMatR1 𝑅)
minmar1fval.o 1 = (1r𝑅)
minmar1fval.z 0 = (0g𝑅)
Assertion
Ref Expression
minmar1val0 (𝑀𝐵 → (𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))))
Distinct variable groups:   𝑖,𝑁,𝑗,𝑘,𝑙   𝑅,𝑖,𝑗,𝑘,𝑙   𝑖,𝑀,𝑗,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑙)   𝑄(𝑖,𝑗,𝑘,𝑙)   1 (𝑖,𝑗,𝑘,𝑙)   0 (𝑖,𝑗,𝑘,𝑙)

Proof of Theorem minmar1val0
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 minmar1fval.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 minmar1fval.b . . . . 5 𝐵 = (Base‘𝐴)
31, 2matrcl 21540 . . . 4 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 494 . . 3 (𝑀𝐵𝑁 ∈ Fin)
5 mpoexga 7904 . . 3 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))) ∈ V)
64, 4, 5syl2anc 583 . 2 (𝑀𝐵 → (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))) ∈ V)
7 oveq 7274 . . . . . 6 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
87ifeq2d 4484 . . . . 5 (𝑚 = 𝑀 → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗)) = if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))
98mpoeq3dv 7345 . . . 4 (𝑚 = 𝑀 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))
109mpoeq3dv 7345 . . 3 (𝑚 = 𝑀 → (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗)))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))))
11 minmar1fval.q . . . 4 𝑄 = (𝑁 minMatR1 𝑅)
12 minmar1fval.o . . . 4 1 = (1r𝑅)
13 minmar1fval.z . . . 4 0 = (0g𝑅)
141, 2, 11, 12, 13minmar1fval 21776 . . 3 𝑄 = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗)))))
1510, 14fvmptg 6867 . 2 ((𝑀𝐵 ∧ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))) ∈ V) → (𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))))
166, 15mpdan 683 1 (𝑀𝐵 → (𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  Vcvv 3430  ifcif 4464  cfv 6430  (class class class)co 7268  cmpo 7270  Fincfn 8707  Basecbs 16893  0gc0g 17131  1rcur 19718   Mat cmat 21535   minMatR1 cminmar1 21763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-1cn 10913  ax-addcl 10915
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-nn 11957  df-slot 16864  df-ndx 16876  df-base 16894  df-mat 21536  df-minmar1 21765
This theorem is referenced by:  minmar1val  21778  minmar1marrep  21780
  Copyright terms: Public domain W3C validator