![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minmar1val0 | Structured version Visualization version GIF version |
Description: Second substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.) |
Ref | Expression |
---|---|
minmar1fval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
minmar1fval.b | ⊢ 𝐵 = (Base‘𝐴) |
minmar1fval.q | ⊢ 𝑄 = (𝑁 minMatR1 𝑅) |
minmar1fval.o | ⊢ 1 = (1r‘𝑅) |
minmar1fval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
minmar1val0 | ⊢ (𝑀 ∈ 𝐵 → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minmar1fval.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | minmar1fval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 20740 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | simpld 487 | . . 3 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
5 | mpoexga 7581 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))) ∈ V) | |
6 | 4, 4, 5 | syl2anc 576 | . 2 ⊢ (𝑀 ∈ 𝐵 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))) ∈ V) |
7 | oveq 6980 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) | |
8 | 7 | ifeq2d 4363 | . . . . 5 ⊢ (𝑚 = 𝑀 → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗)) = if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) |
9 | 8 | mpoeq3dv 7049 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))) |
10 | 9 | mpoeq3dv 7049 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗)))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))) |
11 | minmar1fval.q | . . . 4 ⊢ 𝑄 = (𝑁 minMatR1 𝑅) | |
12 | minmar1fval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
13 | minmar1fval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
14 | 1, 2, 11, 12, 13 | minmar1fval 20974 | . . 3 ⊢ 𝑄 = (𝑚 ∈ 𝐵 ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗))))) |
15 | 10, 14 | fvmptg 6591 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))) ∈ V) → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))) |
16 | 6, 15 | mpdan 675 | 1 ⊢ (𝑀 ∈ 𝐵 → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 Vcvv 3408 ifcif 4344 ‘cfv 6185 (class class class)co 6974 ∈ cmpo 6976 Fincfn 8304 Basecbs 16337 0gc0g 16567 1rcur 18986 Mat cmat 20735 minMatR1 cminmar1 20961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-1st 7499 df-2nd 7500 df-slot 16341 df-base 16343 df-mat 20736 df-minmar1 20963 |
This theorem is referenced by: minmar1val 20976 minmar1marrep 20978 |
Copyright terms: Public domain | W3C validator |