Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > minmar1val0 | Structured version Visualization version GIF version |
Description: Second substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.) |
Ref | Expression |
---|---|
minmar1fval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
minmar1fval.b | ⊢ 𝐵 = (Base‘𝐴) |
minmar1fval.q | ⊢ 𝑄 = (𝑁 minMatR1 𝑅) |
minmar1fval.o | ⊢ 1 = (1r‘𝑅) |
minmar1fval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
minmar1val0 | ⊢ (𝑀 ∈ 𝐵 → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minmar1fval.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | minmar1fval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 21540 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | simpld 494 | . . 3 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
5 | mpoexga 7904 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))) ∈ V) | |
6 | 4, 4, 5 | syl2anc 583 | . 2 ⊢ (𝑀 ∈ 𝐵 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))) ∈ V) |
7 | oveq 7274 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) | |
8 | 7 | ifeq2d 4484 | . . . . 5 ⊢ (𝑚 = 𝑀 → if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗)) = if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))) |
9 | 8 | mpoeq3dv 7345 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))) |
10 | 9 | mpoeq3dv 7345 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗)))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))) |
11 | minmar1fval.q | . . . 4 ⊢ 𝑄 = (𝑁 minMatR1 𝑅) | |
12 | minmar1fval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
13 | minmar1fval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
14 | 1, 2, 11, 12, 13 | minmar1fval 21776 | . . 3 ⊢ 𝑄 = (𝑚 ∈ 𝐵 ↦ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗))))) |
15 | 10, 14 | fvmptg 6867 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))) ∈ V) → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))) |
16 | 6, 15 | mpdan 683 | 1 ⊢ (𝑀 ∈ 𝐵 → (𝑄‘𝑀) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ifcif 4464 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 Fincfn 8707 Basecbs 16893 0gc0g 17131 1rcur 19718 Mat cmat 21535 minMatR1 cminmar1 21763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-1cn 10913 ax-addcl 10915 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-nn 11957 df-slot 16864 df-ndx 16876 df-base 16894 df-mat 21536 df-minmar1 21765 |
This theorem is referenced by: minmar1val 21778 minmar1marrep 21780 |
Copyright terms: Public domain | W3C validator |