MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submaval0 Structured version   Visualization version   GIF version

Theorem submaval0 21637
Description: Second substitution for a submatrix. (Contributed by AV, 28-Dec-2018.)
Hypotheses
Ref Expression
submafval.a 𝐴 = (𝑁 Mat 𝑅)
submafval.q 𝑄 = (𝑁 subMat 𝑅)
submafval.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submaval0 (𝑀𝐵 → (𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))))
Distinct variable groups:   𝑖,𝑁,𝑗,𝑘,𝑙   𝑅,𝑖,𝑗,𝑘,𝑙   𝑖,𝑀,𝑗,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑙)   𝑄(𝑖,𝑗,𝑘,𝑙)

Proof of Theorem submaval0
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 submafval.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 submafval.b . . . . 5 𝐵 = (Base‘𝐴)
31, 2matrcl 21469 . . . 4 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 494 . . 3 (𝑀𝐵𝑁 ∈ Fin)
5 mpoexga 7891 . . 3 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))) ∈ V)
64, 4, 5syl2anc 583 . 2 (𝑀𝐵 → (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))) ∈ V)
7 oveq 7261 . . . . 5 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
87mpoeq3dv 7332 . . . 4 (𝑚 = 𝑀 → (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)) = (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗)))
98mpoeq3dv 7332 . . 3 (𝑚 = 𝑀 → (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))))
10 submafval.q . . . 4 𝑄 = (𝑁 subMat 𝑅)
111, 10, 2submafval 21636 . . 3 𝑄 = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))
129, 11fvmptg 6855 . 2 ((𝑀𝐵 ∧ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))) ∈ V) → (𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))))
136, 12mpdan 683 1 (𝑀𝐵 → (𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖 ∈ (𝑁 ∖ {𝑘}), 𝑗 ∈ (𝑁 ∖ {𝑙}) ↦ (𝑖𝑀𝑗))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  {csn 4558  cfv 6418  (class class class)co 7255  cmpo 7257  Fincfn 8691  Basecbs 16840   Mat cmat 21464   subMat csubma 21633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-slot 16811  df-ndx 16823  df-base 16841  df-mat 21465  df-subma 21634
This theorem is referenced by:  submaval  21638
  Copyright terms: Public domain W3C validator