Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringmulrvald Structured version   Visualization version   GIF version

Theorem mnringmulrvald 41293
Description: Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.)
Hypotheses
Ref Expression
mnringmulrvald.1 𝐹 = (𝑅 MndRing 𝑀)
mnringmulrvald.2 𝐵 = (Base‘𝐹)
mnringmulrvald.3 = (.r𝑅)
mnringmulrvald.4 𝟎 = (0g𝑅)
mnringmulrvald.5 𝐴 = (Base‘𝑀)
mnringmulrvald.6 + = (+g𝑀)
mnringmulrvald.7 · = (.r𝐹)
mnringmulrvald.8 (𝜑𝑅𝑈)
mnringmulrvald.9 (𝜑𝑀𝑊)
mnringmulrvald.10 (𝜑𝑋𝐵)
mnringmulrvald.11 (𝜑𝑌𝐵)
Assertion
Ref Expression
mnringmulrvald (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
Distinct variable groups:   𝐴,𝑎,𝑏   𝑅,𝑎,𝑏,𝑖   𝑀,𝑎,𝑏,𝑖   𝑋,𝑎,𝑏,𝑖   𝑌,𝑎,𝑏,𝑖
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐴(𝑖)   𝐵(𝑖,𝑎,𝑏)   + (𝑖,𝑎,𝑏)   (𝑖,𝑎,𝑏)   · (𝑖,𝑎,𝑏)   𝑈(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝑊(𝑖,𝑎,𝑏)   𝟎 (𝑖,𝑎,𝑏)

Proof of Theorem mnringmulrvald
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnringmulrvald.1 . . . . 5 𝐹 = (𝑅 MndRing 𝑀)
2 mnringmulrvald.2 . . . . 5 𝐵 = (Base‘𝐹)
3 mnringmulrvald.3 . . . . 5 = (.r𝑅)
4 mnringmulrvald.4 . . . . 5 𝟎 = (0g𝑅)
5 mnringmulrvald.5 . . . . 5 𝐴 = (Base‘𝑀)
6 mnringmulrvald.6 . . . . 5 + = (+g𝑀)
7 mnringmulrvald.8 . . . . 5 (𝜑𝑅𝑈)
8 mnringmulrvald.9 . . . . 5 (𝜑𝑀𝑊)
91, 2, 3, 4, 5, 6, 7, 8mnringmulrd 41289 . . . 4 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ))))) = (.r𝐹))
10 mnringmulrvald.7 . . . 4 · = (.r𝐹)
119, 10eqtr4di 2812 . . 3 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ))))) = · )
1211eqcomd 2765 . 2 (𝜑· = (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ))))))
13 fveq1 6650 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥𝑎) = (𝑋𝑎))
14 fveq1 6650 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦𝑏) = (𝑌𝑏))
1513, 14oveqan12d 7162 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝑎) (𝑦𝑏)) = ((𝑋𝑎) (𝑌𝑏)))
1615ifeq1d 4432 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ) = if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 ))
1716mpteq2dv 5121 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 )) = (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))
1817mpoeq3dv 7220 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ))) = (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 ))))
1918oveq2d 7159 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 )))) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
2019adantl 486 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 )))) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
21 mnringmulrvald.10 . 2 (𝜑𝑋𝐵)
22 mnringmulrvald.11 . 2 (𝜑𝑌𝐵)
23 ovexd 7178 . 2 (𝜑 → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))) ∈ V)
2412, 20, 21, 22, 23ovmpod 7290 1 (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  Vcvv 3407  ifcif 4413  cmpt 5105  cfv 6328  (class class class)co 7143  cmpo 7145  Basecbs 16526  +gcplusg 16608  .rcmulr 16609  0gc0g 16756   Σg cgsu 16757   MndRing cmnring 41277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-3 11723  df-seq 13404  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-plusg 16621  df-mulr 16622  df-0g 16758  df-gsum 16759  df-mnring 41278
This theorem is referenced by:  mnringmulrcld  41294
  Copyright terms: Public domain W3C validator