| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mnringmulrvald | Structured version Visualization version GIF version | ||
| Description: Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
| Ref | Expression |
|---|---|
| mnringmulrvald.1 | ⊢ 𝐹 = (𝑅 MndRing 𝑀) |
| mnringmulrvald.2 | ⊢ 𝐵 = (Base‘𝐹) |
| mnringmulrvald.3 | ⊢ ∙ = (.r‘𝑅) |
| mnringmulrvald.4 | ⊢ 𝟎 = (0g‘𝑅) |
| mnringmulrvald.5 | ⊢ 𝐴 = (Base‘𝑀) |
| mnringmulrvald.6 | ⊢ + = (+g‘𝑀) |
| mnringmulrvald.7 | ⊢ · = (.r‘𝐹) |
| mnringmulrvald.8 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
| mnringmulrvald.9 | ⊢ (𝜑 → 𝑀 ∈ 𝑊) |
| mnringmulrvald.10 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| mnringmulrvald.11 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mnringmulrvald | ⊢ (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnringmulrvald.1 | . . . . 5 ⊢ 𝐹 = (𝑅 MndRing 𝑀) | |
| 2 | mnringmulrvald.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
| 3 | mnringmulrvald.3 | . . . . 5 ⊢ ∙ = (.r‘𝑅) | |
| 4 | mnringmulrvald.4 | . . . . 5 ⊢ 𝟎 = (0g‘𝑅) | |
| 5 | mnringmulrvald.5 | . . . . 5 ⊢ 𝐴 = (Base‘𝑀) | |
| 6 | mnringmulrvald.6 | . . . . 5 ⊢ + = (+g‘𝑀) | |
| 7 | mnringmulrvald.8 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
| 8 | mnringmulrvald.9 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑊) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mnringmulrd 44255 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 ))))) = (.r‘𝐹)) |
| 10 | mnringmulrvald.7 | . . . 4 ⊢ · = (.r‘𝐹) | |
| 11 | 9, 10 | eqtr4di 2784 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 ))))) = · ) |
| 12 | 11 | eqcomd 2737 | . 2 ⊢ (𝜑 → · = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 )))))) |
| 13 | fveq1 6821 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑥‘𝑎) = (𝑋‘𝑎)) | |
| 14 | fveq1 6821 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦‘𝑏) = (𝑌‘𝑏)) | |
| 15 | 13, 14 | oveqan12d 7365 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥‘𝑎) ∙ (𝑦‘𝑏)) = ((𝑋‘𝑎) ∙ (𝑌‘𝑏))) |
| 16 | 15 | ifeq1d 4495 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 ) = if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 )) |
| 17 | 16 | mpteq2dv 5185 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 )) = (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))) |
| 18 | 17 | mpoeq3dv 7425 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 ))) = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 )))) |
| 19 | 18 | oveq2d 7362 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 )))) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) |
| 20 | 19 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 )))) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) |
| 21 | mnringmulrvald.10 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 22 | mnringmulrvald.11 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 23 | ovexd 7381 | . 2 ⊢ (𝜑 → (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 )))) ∈ V) | |
| 24 | 12, 20, 21, 22, 23 | ovmpod 7498 | 1 ⊢ (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ifcif 4475 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17117 +gcplusg 17158 .rcmulr 17159 0gc0g 17340 Σg cgsu 17341 MndRing cmnring 44243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-seq 13906 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-0g 17342 df-gsum 17343 df-mnring 44244 |
| This theorem is referenced by: mnringmulrcld 44260 |
| Copyright terms: Public domain | W3C validator |