| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mnringmulrvald | Structured version Visualization version GIF version | ||
| Description: Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
| Ref | Expression |
|---|---|
| mnringmulrvald.1 | ⊢ 𝐹 = (𝑅 MndRing 𝑀) |
| mnringmulrvald.2 | ⊢ 𝐵 = (Base‘𝐹) |
| mnringmulrvald.3 | ⊢ ∙ = (.r‘𝑅) |
| mnringmulrvald.4 | ⊢ 𝟎 = (0g‘𝑅) |
| mnringmulrvald.5 | ⊢ 𝐴 = (Base‘𝑀) |
| mnringmulrvald.6 | ⊢ + = (+g‘𝑀) |
| mnringmulrvald.7 | ⊢ · = (.r‘𝐹) |
| mnringmulrvald.8 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
| mnringmulrvald.9 | ⊢ (𝜑 → 𝑀 ∈ 𝑊) |
| mnringmulrvald.10 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| mnringmulrvald.11 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| mnringmulrvald | ⊢ (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnringmulrvald.1 | . . . . 5 ⊢ 𝐹 = (𝑅 MndRing 𝑀) | |
| 2 | mnringmulrvald.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
| 3 | mnringmulrvald.3 | . . . . 5 ⊢ ∙ = (.r‘𝑅) | |
| 4 | mnringmulrvald.4 | . . . . 5 ⊢ 𝟎 = (0g‘𝑅) | |
| 5 | mnringmulrvald.5 | . . . . 5 ⊢ 𝐴 = (Base‘𝑀) | |
| 6 | mnringmulrvald.6 | . . . . 5 ⊢ + = (+g‘𝑀) | |
| 7 | mnringmulrvald.8 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
| 8 | mnringmulrvald.9 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑊) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mnringmulrd 44196 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 ))))) = (.r‘𝐹)) |
| 10 | mnringmulrvald.7 | . . . 4 ⊢ · = (.r‘𝐹) | |
| 11 | 9, 10 | eqtr4di 2782 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 ))))) = · ) |
| 12 | 11 | eqcomd 2735 | . 2 ⊢ (𝜑 → · = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 )))))) |
| 13 | fveq1 6825 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑥‘𝑎) = (𝑋‘𝑎)) | |
| 14 | fveq1 6825 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦‘𝑏) = (𝑌‘𝑏)) | |
| 15 | 13, 14 | oveqan12d 7372 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥‘𝑎) ∙ (𝑦‘𝑏)) = ((𝑋‘𝑎) ∙ (𝑌‘𝑏))) |
| 16 | 15 | ifeq1d 4498 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 ) = if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 )) |
| 17 | 16 | mpteq2dv 5189 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 )) = (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))) |
| 18 | 17 | mpoeq3dv 7432 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 ))) = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 )))) |
| 19 | 18 | oveq2d 7369 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 )))) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) |
| 20 | 19 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 )))) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) |
| 21 | mnringmulrvald.10 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 22 | mnringmulrvald.11 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 23 | ovexd 7388 | . 2 ⊢ (𝜑 → (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 )))) ∈ V) | |
| 24 | 12, 20, 21, 22, 23 | ovmpod 7505 | 1 ⊢ (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ifcif 4478 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17138 +gcplusg 17179 .rcmulr 17180 0gc0g 17361 Σg cgsu 17362 MndRing cmnring 44184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-seq 13927 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-mulr 17193 df-0g 17363 df-gsum 17364 df-mnring 44185 |
| This theorem is referenced by: mnringmulrcld 44201 |
| Copyright terms: Public domain | W3C validator |