Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringmulrvald Structured version   Visualization version   GIF version

Theorem mnringmulrvald 44344
Description: Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.)
Hypotheses
Ref Expression
mnringmulrvald.1 𝐹 = (𝑅 MndRing 𝑀)
mnringmulrvald.2 𝐵 = (Base‘𝐹)
mnringmulrvald.3 = (.r𝑅)
mnringmulrvald.4 𝟎 = (0g𝑅)
mnringmulrvald.5 𝐴 = (Base‘𝑀)
mnringmulrvald.6 + = (+g𝑀)
mnringmulrvald.7 · = (.r𝐹)
mnringmulrvald.8 (𝜑𝑅𝑈)
mnringmulrvald.9 (𝜑𝑀𝑊)
mnringmulrvald.10 (𝜑𝑋𝐵)
mnringmulrvald.11 (𝜑𝑌𝐵)
Assertion
Ref Expression
mnringmulrvald (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
Distinct variable groups:   𝐴,𝑎,𝑏   𝑅,𝑎,𝑏,𝑖   𝑀,𝑎,𝑏,𝑖   𝑋,𝑎,𝑏,𝑖   𝑌,𝑎,𝑏,𝑖
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐴(𝑖)   𝐵(𝑖,𝑎,𝑏)   + (𝑖,𝑎,𝑏)   (𝑖,𝑎,𝑏)   · (𝑖,𝑎,𝑏)   𝑈(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝑊(𝑖,𝑎,𝑏)   𝟎 (𝑖,𝑎,𝑏)

Proof of Theorem mnringmulrvald
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnringmulrvald.1 . . . . 5 𝐹 = (𝑅 MndRing 𝑀)
2 mnringmulrvald.2 . . . . 5 𝐵 = (Base‘𝐹)
3 mnringmulrvald.3 . . . . 5 = (.r𝑅)
4 mnringmulrvald.4 . . . . 5 𝟎 = (0g𝑅)
5 mnringmulrvald.5 . . . . 5 𝐴 = (Base‘𝑀)
6 mnringmulrvald.6 . . . . 5 + = (+g𝑀)
7 mnringmulrvald.8 . . . . 5 (𝜑𝑅𝑈)
8 mnringmulrvald.9 . . . . 5 (𝜑𝑀𝑊)
91, 2, 3, 4, 5, 6, 7, 8mnringmulrd 44340 . . . 4 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ))))) = (.r𝐹))
10 mnringmulrvald.7 . . . 4 · = (.r𝐹)
119, 10eqtr4di 2786 . . 3 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ))))) = · )
1211eqcomd 2739 . 2 (𝜑· = (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ))))))
13 fveq1 6827 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥𝑎) = (𝑋𝑎))
14 fveq1 6827 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦𝑏) = (𝑌𝑏))
1513, 14oveqan12d 7371 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝑎) (𝑦𝑏)) = ((𝑋𝑎) (𝑌𝑏)))
1615ifeq1d 4494 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ) = if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 ))
1716mpteq2dv 5187 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 )) = (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))
1817mpoeq3dv 7431 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ))) = (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 ))))
1918oveq2d 7368 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 )))) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
2019adantl 481 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 )))) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
21 mnringmulrvald.10 . 2 (𝜑𝑋𝐵)
22 mnringmulrvald.11 . 2 (𝜑𝑌𝐵)
23 ovexd 7387 . 2 (𝜑 → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))) ∈ V)
2412, 20, 21, 22, 23ovmpod 7504 1 (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  ifcif 4474  cmpt 5174  cfv 6486  (class class class)co 7352  cmpo 7354  Basecbs 17122  +gcplusg 17163  .rcmulr 17164  0gc0g 17345   Σg cgsu 17346   MndRing cmnring 44328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-seq 13911  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-0g 17347  df-gsum 17348  df-mnring 44329
This theorem is referenced by:  mnringmulrcld  44345
  Copyright terms: Public domain W3C validator