Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnringmulrvald | Structured version Visualization version GIF version |
Description: Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
Ref | Expression |
---|---|
mnringmulrvald.1 | ⊢ 𝐹 = (𝑅 MndRing 𝑀) |
mnringmulrvald.2 | ⊢ 𝐵 = (Base‘𝐹) |
mnringmulrvald.3 | ⊢ ∙ = (.r‘𝑅) |
mnringmulrvald.4 | ⊢ 𝟎 = (0g‘𝑅) |
mnringmulrvald.5 | ⊢ 𝐴 = (Base‘𝑀) |
mnringmulrvald.6 | ⊢ + = (+g‘𝑀) |
mnringmulrvald.7 | ⊢ · = (.r‘𝐹) |
mnringmulrvald.8 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
mnringmulrvald.9 | ⊢ (𝜑 → 𝑀 ∈ 𝑊) |
mnringmulrvald.10 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
mnringmulrvald.11 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
mnringmulrvald | ⊢ (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringmulrvald.1 | . . . . 5 ⊢ 𝐹 = (𝑅 MndRing 𝑀) | |
2 | mnringmulrvald.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
3 | mnringmulrvald.3 | . . . . 5 ⊢ ∙ = (.r‘𝑅) | |
4 | mnringmulrvald.4 | . . . . 5 ⊢ 𝟎 = (0g‘𝑅) | |
5 | mnringmulrvald.5 | . . . . 5 ⊢ 𝐴 = (Base‘𝑀) | |
6 | mnringmulrvald.6 | . . . . 5 ⊢ + = (+g‘𝑀) | |
7 | mnringmulrvald.8 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
8 | mnringmulrvald.9 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑊) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mnringmulrd 41728 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 ))))) = (.r‘𝐹)) |
10 | mnringmulrvald.7 | . . . 4 ⊢ · = (.r‘𝐹) | |
11 | 9, 10 | eqtr4di 2797 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 ))))) = · ) |
12 | 11 | eqcomd 2744 | . 2 ⊢ (𝜑 → · = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 )))))) |
13 | fveq1 6755 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (𝑥‘𝑎) = (𝑋‘𝑎)) | |
14 | fveq1 6755 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦‘𝑏) = (𝑌‘𝑏)) | |
15 | 13, 14 | oveqan12d 7274 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥‘𝑎) ∙ (𝑦‘𝑏)) = ((𝑋‘𝑎) ∙ (𝑌‘𝑏))) |
16 | 15 | ifeq1d 4475 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 ) = if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 )) |
17 | 16 | mpteq2dv 5172 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 )) = (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))) |
18 | 17 | mpoeq3dv 7332 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 ))) = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 )))) |
19 | 18 | oveq2d 7271 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 )))) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) |
20 | 19 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) ∙ (𝑦‘𝑏)), 𝟎 )))) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) |
21 | mnringmulrvald.10 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
22 | mnringmulrvald.11 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
23 | ovexd 7290 | . 2 ⊢ (𝜑 → (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 )))) ∈ V) | |
24 | 12, 20, 21, 22, 23 | ovmpod 7403 | 1 ⊢ (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ifcif 4456 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 0gc0g 17067 Σg cgsu 17068 MndRing cmnring 41713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-seq 13650 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-0g 17069 df-gsum 17070 df-mnring 41714 |
This theorem is referenced by: mnringmulrcld 41735 |
Copyright terms: Public domain | W3C validator |