Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringmulrvald Structured version   Visualization version   GIF version

Theorem mnringmulrvald 44259
Description: Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.)
Hypotheses
Ref Expression
mnringmulrvald.1 𝐹 = (𝑅 MndRing 𝑀)
mnringmulrvald.2 𝐵 = (Base‘𝐹)
mnringmulrvald.3 = (.r𝑅)
mnringmulrvald.4 𝟎 = (0g𝑅)
mnringmulrvald.5 𝐴 = (Base‘𝑀)
mnringmulrvald.6 + = (+g𝑀)
mnringmulrvald.7 · = (.r𝐹)
mnringmulrvald.8 (𝜑𝑅𝑈)
mnringmulrvald.9 (𝜑𝑀𝑊)
mnringmulrvald.10 (𝜑𝑋𝐵)
mnringmulrvald.11 (𝜑𝑌𝐵)
Assertion
Ref Expression
mnringmulrvald (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
Distinct variable groups:   𝐴,𝑎,𝑏   𝑅,𝑎,𝑏,𝑖   𝑀,𝑎,𝑏,𝑖   𝑋,𝑎,𝑏,𝑖   𝑌,𝑎,𝑏,𝑖
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐴(𝑖)   𝐵(𝑖,𝑎,𝑏)   + (𝑖,𝑎,𝑏)   (𝑖,𝑎,𝑏)   · (𝑖,𝑎,𝑏)   𝑈(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝑊(𝑖,𝑎,𝑏)   𝟎 (𝑖,𝑎,𝑏)

Proof of Theorem mnringmulrvald
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnringmulrvald.1 . . . . 5 𝐹 = (𝑅 MndRing 𝑀)
2 mnringmulrvald.2 . . . . 5 𝐵 = (Base‘𝐹)
3 mnringmulrvald.3 . . . . 5 = (.r𝑅)
4 mnringmulrvald.4 . . . . 5 𝟎 = (0g𝑅)
5 mnringmulrvald.5 . . . . 5 𝐴 = (Base‘𝑀)
6 mnringmulrvald.6 . . . . 5 + = (+g𝑀)
7 mnringmulrvald.8 . . . . 5 (𝜑𝑅𝑈)
8 mnringmulrvald.9 . . . . 5 (𝜑𝑀𝑊)
91, 2, 3, 4, 5, 6, 7, 8mnringmulrd 44255 . . . 4 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ))))) = (.r𝐹))
10 mnringmulrvald.7 . . . 4 · = (.r𝐹)
119, 10eqtr4di 2784 . . 3 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ))))) = · )
1211eqcomd 2737 . 2 (𝜑· = (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ))))))
13 fveq1 6821 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥𝑎) = (𝑋𝑎))
14 fveq1 6821 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦𝑏) = (𝑌𝑏))
1513, 14oveqan12d 7365 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝑎) (𝑦𝑏)) = ((𝑋𝑎) (𝑌𝑏)))
1615ifeq1d 4495 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ) = if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 ))
1716mpteq2dv 5185 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 )) = (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))
1817mpoeq3dv 7425 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ))) = (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 ))))
1918oveq2d 7362 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 )))) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
2019adantl 481 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 )))) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
21 mnringmulrvald.10 . 2 (𝜑𝑋𝐵)
22 mnringmulrvald.11 . 2 (𝜑𝑌𝐵)
23 ovexd 7381 . 2 (𝜑 → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))) ∈ V)
2412, 20, 21, 22, 23ovmpod 7498 1 (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  ifcif 4475  cmpt 5172  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17117  +gcplusg 17158  .rcmulr 17159  0gc0g 17340   Σg cgsu 17341   MndRing cmnring 44243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-seq 13906  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-mulr 17172  df-0g 17342  df-gsum 17343  df-mnring 44244
This theorem is referenced by:  mnringmulrcld  44260
  Copyright terms: Public domain W3C validator