Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringmulrvald Structured version   Visualization version   GIF version

Theorem mnringmulrvald 44209
Description: Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.)
Hypotheses
Ref Expression
mnringmulrvald.1 𝐹 = (𝑅 MndRing 𝑀)
mnringmulrvald.2 𝐵 = (Base‘𝐹)
mnringmulrvald.3 = (.r𝑅)
mnringmulrvald.4 𝟎 = (0g𝑅)
mnringmulrvald.5 𝐴 = (Base‘𝑀)
mnringmulrvald.6 + = (+g𝑀)
mnringmulrvald.7 · = (.r𝐹)
mnringmulrvald.8 (𝜑𝑅𝑈)
mnringmulrvald.9 (𝜑𝑀𝑊)
mnringmulrvald.10 (𝜑𝑋𝐵)
mnringmulrvald.11 (𝜑𝑌𝐵)
Assertion
Ref Expression
mnringmulrvald (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
Distinct variable groups:   𝐴,𝑎,𝑏   𝑅,𝑎,𝑏,𝑖   𝑀,𝑎,𝑏,𝑖   𝑋,𝑎,𝑏,𝑖   𝑌,𝑎,𝑏,𝑖
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐴(𝑖)   𝐵(𝑖,𝑎,𝑏)   + (𝑖,𝑎,𝑏)   (𝑖,𝑎,𝑏)   · (𝑖,𝑎,𝑏)   𝑈(𝑖,𝑎,𝑏)   𝐹(𝑖,𝑎,𝑏)   𝑊(𝑖,𝑎,𝑏)   𝟎 (𝑖,𝑎,𝑏)

Proof of Theorem mnringmulrvald
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnringmulrvald.1 . . . . 5 𝐹 = (𝑅 MndRing 𝑀)
2 mnringmulrvald.2 . . . . 5 𝐵 = (Base‘𝐹)
3 mnringmulrvald.3 . . . . 5 = (.r𝑅)
4 mnringmulrvald.4 . . . . 5 𝟎 = (0g𝑅)
5 mnringmulrvald.5 . . . . 5 𝐴 = (Base‘𝑀)
6 mnringmulrvald.6 . . . . 5 + = (+g𝑀)
7 mnringmulrvald.8 . . . . 5 (𝜑𝑅𝑈)
8 mnringmulrvald.9 . . . . 5 (𝜑𝑀𝑊)
91, 2, 3, 4, 5, 6, 7, 8mnringmulrd 44205 . . . 4 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ))))) = (.r𝐹))
10 mnringmulrvald.7 . . . 4 · = (.r𝐹)
119, 10eqtr4di 2783 . . 3 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ))))) = · )
1211eqcomd 2736 . 2 (𝜑· = (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ))))))
13 fveq1 6859 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥𝑎) = (𝑋𝑎))
14 fveq1 6859 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦𝑏) = (𝑌𝑏))
1513, 14oveqan12d 7408 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝑎) (𝑦𝑏)) = ((𝑋𝑎) (𝑌𝑏)))
1615ifeq1d 4510 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ) = if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 ))
1716mpteq2dv 5203 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 )) = (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))
1817mpoeq3dv 7470 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 ))) = (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 ))))
1918oveq2d 7405 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 )))) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
2019adantl 481 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) (𝑦𝑏)), 𝟎 )))) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
21 mnringmulrvald.10 . 2 (𝜑𝑋𝐵)
22 mnringmulrvald.11 . 2 (𝜑𝑌𝐵)
23 ovexd 7424 . 2 (𝜑 → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))) ∈ V)
2412, 20, 21, 22, 23ovmpod 7543 1 (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  ifcif 4490  cmpt 5190  cfv 6513  (class class class)co 7389  cmpo 7391  Basecbs 17185  +gcplusg 17226  .rcmulr 17227  0gc0g 17408   Σg cgsu 17409   MndRing cmnring 44193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-seq 13973  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-plusg 17239  df-mulr 17240  df-0g 17410  df-gsum 17411  df-mnring 44194
This theorem is referenced by:  mnringmulrcld  44210
  Copyright terms: Public domain W3C validator