![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdetr0 | Structured version Visualization version GIF version |
Description: The determinant of a matrix with a row containing only 0's is 0. (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
mdetr0.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
mdetr0.k | ⊢ 𝐾 = (Base‘𝑅) |
mdetr0.z | ⊢ 0 = (0g‘𝑅) |
mdetr0.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mdetr0.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mdetr0.x | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
mdetr0.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
Ref | Expression |
---|---|
mdetr0 | ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋))) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdetr0.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
2 | mdetr0.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
3 | eqid 2825 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | mdetr0.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
5 | mdetr0.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
6 | crngring 18912 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
8 | mdetr0.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
9 | 2, 8 | ring0cl 18923 | . . . . 5 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐾) |
10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝐾) |
11 | 10 | 3ad2ant1 1169 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 0 ∈ 𝐾) |
12 | mdetr0.x | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) | |
13 | mdetr0.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
14 | 1, 2, 3, 4, 5, 11, 12, 10, 13 | mdetrsca2 20778 | . 2 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, ( 0 (.r‘𝑅) 0 ), 𝑋))) = ( 0 (.r‘𝑅)(𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋))))) |
15 | 2, 3, 8 | ringlz 18941 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ 𝐾) → ( 0 (.r‘𝑅) 0 ) = 0 ) |
16 | 7, 10, 15 | syl2anc 581 | . . . . 5 ⊢ (𝜑 → ( 0 (.r‘𝑅) 0 ) = 0 ) |
17 | 16 | ifeq1d 4324 | . . . 4 ⊢ (𝜑 → if(𝑖 = 𝐼, ( 0 (.r‘𝑅) 0 ), 𝑋) = if(𝑖 = 𝐼, 0 , 𝑋)) |
18 | 17 | mpt2eq3dv 6981 | . . 3 ⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, ( 0 (.r‘𝑅) 0 ), 𝑋)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋))) |
19 | 18 | fveq2d 6437 | . 2 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, ( 0 (.r‘𝑅) 0 ), 𝑋))) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋)))) |
20 | eqid 2825 | . . . . . 6 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
21 | eqid 2825 | . . . . . 6 ⊢ (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅)) | |
22 | 1, 20, 21, 2 | mdetf 20769 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝐷:(Base‘(𝑁 Mat 𝑅))⟶𝐾) |
23 | 4, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐷:(Base‘(𝑁 Mat 𝑅))⟶𝐾) |
24 | 11, 12 | ifcld 4351 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, 0 , 𝑋) ∈ 𝐾) |
25 | 20, 2, 21, 5, 4, 24 | matbas2d 20596 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋)) ∈ (Base‘(𝑁 Mat 𝑅))) |
26 | 23, 25 | ffvelrnd 6609 | . . 3 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋))) ∈ 𝐾) |
27 | 2, 3, 8 | ringlz 18941 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋))) ∈ 𝐾) → ( 0 (.r‘𝑅)(𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋)))) = 0 ) |
28 | 7, 26, 27 | syl2anc 581 | . 2 ⊢ (𝜑 → ( 0 (.r‘𝑅)(𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋)))) = 0 ) |
29 | 14, 19, 28 | 3eqtr3d 2869 | 1 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋))) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ifcif 4306 ⟶wf 6119 ‘cfv 6123 (class class class)co 6905 ↦ cmpt2 6907 Fincfn 8222 Basecbs 16222 .rcmulr 16306 0gc0g 16453 Ringcrg 18901 CRingccrg 18902 Mat cmat 20580 maDet cmdat 20758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-addf 10331 ax-mulf 10332 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-xor 1640 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-ot 4406 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-of 7157 df-om 7327 df-1st 7428 df-2nd 7429 df-supp 7560 df-tpos 7617 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-2o 7827 df-oadd 7830 df-er 8009 df-map 8124 df-pm 8125 df-ixp 8176 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-fsupp 8545 df-sup 8617 df-oi 8684 df-card 9078 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-5 11417 df-6 11418 df-7 11419 df-8 11420 df-9 11421 df-n0 11619 df-xnn0 11691 df-z 11705 df-dec 11822 df-uz 11969 df-rp 12113 df-fz 12620 df-fzo 12761 df-seq 13096 df-exp 13155 df-hash 13411 df-word 13575 df-lsw 13623 df-concat 13631 df-s1 13656 df-substr 13701 df-pfx 13750 df-splice 13857 df-reverse 13875 df-s2 13969 df-struct 16224 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-ress 16230 df-plusg 16318 df-mulr 16319 df-starv 16320 df-sca 16321 df-vsca 16322 df-ip 16323 df-tset 16324 df-ple 16325 df-ds 16327 df-unif 16328 df-hom 16329 df-cco 16330 df-0g 16455 df-gsum 16456 df-prds 16461 df-pws 16463 df-mre 16599 df-mrc 16600 df-acs 16602 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-mhm 17688 df-submnd 17689 df-grp 17779 df-minusg 17780 df-mulg 17895 df-subg 17942 df-ghm 18009 df-gim 18052 df-cntz 18100 df-oppg 18126 df-symg 18148 df-pmtr 18212 df-psgn 18261 df-cmn 18548 df-abl 18549 df-mgp 18844 df-ur 18856 df-ring 18903 df-cring 18904 df-oppr 18977 df-dvdsr 18995 df-unit 18996 df-invr 19026 df-dvr 19037 df-rnghom 19071 df-drng 19105 df-subrg 19134 df-sra 19533 df-rgmod 19534 df-cnfld 20107 df-zring 20179 df-zrh 20212 df-dsmm 20439 df-frlm 20454 df-mat 20581 df-mdet 20759 |
This theorem is referenced by: mdet0 20780 madugsum 20817 matunitlindflem1 33949 |
Copyright terms: Public domain | W3C validator |