![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdetr0 | Structured version Visualization version GIF version |
Description: The determinant of a matrix with a row containing only 0's is 0. (Contributed by SO, 16-Jul-2018.) |
Ref | Expression |
---|---|
mdetr0.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
mdetr0.k | ⊢ 𝐾 = (Base‘𝑅) |
mdetr0.z | ⊢ 0 = (0g‘𝑅) |
mdetr0.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mdetr0.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mdetr0.x | ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) |
mdetr0.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
Ref | Expression |
---|---|
mdetr0 | ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋))) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdetr0.d | . . 3 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
2 | mdetr0.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
3 | eqid 2724 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | mdetr0.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
5 | mdetr0.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
6 | crngring 20146 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
8 | mdetr0.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
9 | 2, 8 | ring0cl 20162 | . . . . 5 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐾) |
10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝐾) |
11 | 10 | 3ad2ant1 1130 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 0 ∈ 𝐾) |
12 | mdetr0.x | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ 𝐾) | |
13 | mdetr0.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
14 | 1, 2, 3, 4, 5, 11, 12, 10, 13 | mdetrsca2 22450 | . 2 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, ( 0 (.r‘𝑅) 0 ), 𝑋))) = ( 0 (.r‘𝑅)(𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋))))) |
15 | 2, 3, 8 | ringlz 20188 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ 𝐾) → ( 0 (.r‘𝑅) 0 ) = 0 ) |
16 | 7, 10, 15 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ( 0 (.r‘𝑅) 0 ) = 0 ) |
17 | 16 | ifeq1d 4540 | . . . 4 ⊢ (𝜑 → if(𝑖 = 𝐼, ( 0 (.r‘𝑅) 0 ), 𝑋) = if(𝑖 = 𝐼, 0 , 𝑋)) |
18 | 17 | mpoeq3dv 7481 | . . 3 ⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, ( 0 (.r‘𝑅) 0 ), 𝑋)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋))) |
19 | 18 | fveq2d 6886 | . 2 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, ( 0 (.r‘𝑅) 0 ), 𝑋))) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋)))) |
20 | eqid 2724 | . . . . . 6 ⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) | |
21 | eqid 2724 | . . . . . 6 ⊢ (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅)) | |
22 | 1, 20, 21, 2 | mdetf 22441 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝐷:(Base‘(𝑁 Mat 𝑅))⟶𝐾) |
23 | 4, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐷:(Base‘(𝑁 Mat 𝑅))⟶𝐾) |
24 | 11, 12 | ifcld 4567 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → if(𝑖 = 𝐼, 0 , 𝑋) ∈ 𝐾) |
25 | 20, 2, 21, 5, 4, 24 | matbas2d 22269 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋)) ∈ (Base‘(𝑁 Mat 𝑅))) |
26 | 23, 25 | ffvelcdmd 7078 | . . 3 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋))) ∈ 𝐾) |
27 | 2, 3, 8 | ringlz 20188 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋))) ∈ 𝐾) → ( 0 (.r‘𝑅)(𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋)))) = 0 ) |
28 | 7, 26, 27 | syl2anc 583 | . 2 ⊢ (𝜑 → ( 0 (.r‘𝑅)(𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋)))) = 0 ) |
29 | 14, 19, 28 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐼, 0 , 𝑋))) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ifcif 4521 ⟶wf 6530 ‘cfv 6534 (class class class)co 7402 ∈ cmpo 7404 Fincfn 8936 Basecbs 17149 .rcmulr 17203 0gc0g 17390 Ringcrg 20134 CRingccrg 20135 Mat cmat 22251 maDet cmdat 22430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-addf 11186 ax-mulf 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-xor 1505 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-ot 4630 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8700 df-map 8819 df-pm 8820 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-sup 9434 df-oi 9502 df-card 9931 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-xnn0 12544 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12976 df-fz 13486 df-fzo 13629 df-seq 13968 df-exp 14029 df-hash 14292 df-word 14467 df-lsw 14515 df-concat 14523 df-s1 14548 df-substr 14593 df-pfx 14623 df-splice 14702 df-reverse 14711 df-s2 14801 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-0g 17392 df-gsum 17393 df-prds 17398 df-pws 17400 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-mhm 18709 df-submnd 18710 df-efmnd 18790 df-grp 18862 df-minusg 18863 df-mulg 18992 df-subg 19046 df-ghm 19135 df-gim 19180 df-cntz 19229 df-oppg 19258 df-symg 19283 df-pmtr 19358 df-psgn 19407 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-cring 20137 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-rhm 20370 df-subrng 20442 df-subrg 20467 df-drng 20585 df-sra 21017 df-rgmod 21018 df-cnfld 21235 df-zring 21323 df-zrh 21379 df-dsmm 21616 df-frlm 21631 df-mat 22252 df-mdet 22431 |
This theorem is referenced by: mdet0 22452 madugsum 22489 matunitlindflem1 36988 |
Copyright terms: Public domain | W3C validator |