| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mamuval | Structured version Visualization version GIF version | ||
| Description: Multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| mamufval.f | ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) |
| mamufval.b | ⊢ 𝐵 = (Base‘𝑅) |
| mamufval.t | ⊢ · = (.r‘𝑅) |
| mamufval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| mamufval.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
| mamufval.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| mamufval.p | ⊢ (𝜑 → 𝑃 ∈ Fin) |
| mamuval.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
| mamuval.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) |
| Ref | Expression |
|---|---|
| mamuval | ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamufval.f | . . 3 ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) | |
| 2 | mamufval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | mamufval.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 4 | mamufval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 5 | mamufval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
| 6 | mamufval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 7 | mamufval.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ Fin) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | mamufval 22305 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐵 ↑m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵 ↑m (𝑁 × 𝑃)) ↦ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))))))) |
| 9 | oveq 7352 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑖𝑥𝑗) = (𝑖𝑋𝑗)) | |
| 10 | oveq 7352 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑗𝑦𝑘) = (𝑗𝑌𝑘)) | |
| 11 | 9, 10 | oveqan12d 7365 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)) = ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))) |
| 12 | 11 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)) = ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))) |
| 13 | 12 | mpteq2dv 5185 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))) |
| 14 | 13 | oveq2d 7362 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))))) |
| 15 | 14 | mpoeq3dv 7425 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))))) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))))) |
| 16 | mamuval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) | |
| 17 | mamuval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) | |
| 18 | mpoexga 8009 | . . 3 ⊢ ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))))) ∈ V) | |
| 19 | 5, 7, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))))) ∈ V) |
| 20 | 8, 15, 16, 17, 19 | ovmpod 7498 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cotp 4584 ↦ cmpt 5172 × cxp 5614 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ↑m cmap 8750 Fincfn 8869 Basecbs 17117 .rcmulr 17159 Σg cgsu 17341 maMul cmmul 22303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-ot 4585 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-mamu 22304 |
| This theorem is referenced by: mamufv 22307 mamures 22310 mamucl 22314 mpomatmul 22359 mamutpos 22371 mat1dimmul 22389 dmatmul 22410 madurid 22557 cramerimplem2 22597 mat2pmatmul 22644 decpmatmul 22685 |
| Copyright terms: Public domain | W3C validator |