![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mamuval | Structured version Visualization version GIF version |
Description: Multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
Ref | Expression |
---|---|
mamufval.f | ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) |
mamufval.b | ⊢ 𝐵 = (Base‘𝑅) |
mamufval.t | ⊢ · = (.r‘𝑅) |
mamufval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
mamufval.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
mamufval.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mamufval.p | ⊢ (𝜑 → 𝑃 ∈ Fin) |
mamuval.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
mamuval.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) |
Ref | Expression |
---|---|
mamuval | ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mamufval.f | . . 3 ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) | |
2 | mamufval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | mamufval.t | . . 3 ⊢ · = (.r‘𝑅) | |
4 | mamufval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
5 | mamufval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
6 | mamufval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
7 | mamufval.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ Fin) | |
8 | 1, 2, 3, 4, 5, 6, 7 | mamufval 22417 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐵 ↑m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵 ↑m (𝑁 × 𝑃)) ↦ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))))))) |
9 | oveq 7454 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑖𝑥𝑗) = (𝑖𝑋𝑗)) | |
10 | oveq 7454 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑗𝑦𝑘) = (𝑗𝑌𝑘)) | |
11 | 9, 10 | oveqan12d 7467 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)) = ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))) |
12 | 11 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)) = ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))) |
13 | 12 | mpteq2dv 5268 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))) |
14 | 13 | oveq2d 7464 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))))) |
15 | 14 | mpoeq3dv 7529 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))))) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))))) |
16 | mamuval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) | |
17 | mamuval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) | |
18 | mpoexga 8118 | . . 3 ⊢ ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))))) ∈ V) | |
19 | 5, 7, 18 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))))) ∈ V) |
20 | 8, 15, 16, 17, 19 | ovmpod 7602 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cotp 4656 ↦ cmpt 5249 × cxp 5698 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ↑m cmap 8884 Fincfn 9003 Basecbs 17258 .rcmulr 17312 Σg cgsu 17500 maMul cmmul 22415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-ot 4657 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-mamu 22416 |
This theorem is referenced by: mamufv 22419 mamures 22422 mamucl 22426 mpomatmul 22473 mamutpos 22485 mat1dimmul 22503 dmatmul 22524 madurid 22671 cramerimplem2 22711 mat2pmatmul 22758 decpmatmul 22799 |
Copyright terms: Public domain | W3C validator |