MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamuval Structured version   Visualization version   GIF version

Theorem mamuval 22308
Description: Multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mamufval.f ๐น = (๐‘… maMul โŸจ๐‘€, ๐‘, ๐‘ƒโŸฉ)
mamufval.b ๐ต = (Baseโ€˜๐‘…)
mamufval.t ยท = (.rโ€˜๐‘…)
mamufval.r (๐œ‘ โ†’ ๐‘… โˆˆ ๐‘‰)
mamufval.m (๐œ‘ โ†’ ๐‘€ โˆˆ Fin)
mamufval.n (๐œ‘ โ†’ ๐‘ โˆˆ Fin)
mamufval.p (๐œ‘ โ†’ ๐‘ƒ โˆˆ Fin)
mamuval.x (๐œ‘ โ†’ ๐‘‹ โˆˆ (๐ต โ†‘m (๐‘€ ร— ๐‘)))
mamuval.y (๐œ‘ โ†’ ๐‘Œ โˆˆ (๐ต โ†‘m (๐‘ ร— ๐‘ƒ)))
Assertion
Ref Expression
mamuval (๐œ‘ โ†’ (๐‘‹๐น๐‘Œ) = (๐‘– โˆˆ ๐‘€, ๐‘˜ โˆˆ ๐‘ƒ โ†ฆ (๐‘… ฮฃg (๐‘— โˆˆ ๐‘ โ†ฆ ((๐‘–๐‘‹๐‘—) ยท (๐‘—๐‘Œ๐‘˜))))))
Distinct variable groups:   ๐‘–,๐‘—,๐‘˜,๐‘€   ๐‘–,๐‘,๐‘—,๐‘˜   ๐‘ƒ,๐‘–,๐‘—,๐‘˜   ๐‘…,๐‘–,๐‘—,๐‘˜   ๐‘–,๐‘‹,๐‘—,๐‘˜   ๐‘–,๐‘Œ,๐‘—,๐‘˜   ๐œ‘,๐‘–,๐‘—,๐‘˜   ยท ,๐‘–,๐‘˜
Allowed substitution hints:   ๐ต(๐‘–,๐‘—,๐‘˜)   ยท (๐‘—)   ๐น(๐‘–,๐‘—,๐‘˜)   ๐‘‰(๐‘–,๐‘—,๐‘˜)

Proof of Theorem mamuval
Dummy variables ๐‘ฅ ๐‘ฆ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamufval.f . . 3 ๐น = (๐‘… maMul โŸจ๐‘€, ๐‘, ๐‘ƒโŸฉ)
2 mamufval.b . . 3 ๐ต = (Baseโ€˜๐‘…)
3 mamufval.t . . 3 ยท = (.rโ€˜๐‘…)
4 mamufval.r . . 3 (๐œ‘ โ†’ ๐‘… โˆˆ ๐‘‰)
5 mamufval.m . . 3 (๐œ‘ โ†’ ๐‘€ โˆˆ Fin)
6 mamufval.n . . 3 (๐œ‘ โ†’ ๐‘ โˆˆ Fin)
7 mamufval.p . . 3 (๐œ‘ โ†’ ๐‘ƒ โˆˆ Fin)
81, 2, 3, 4, 5, 6, 7mamufval 22307 . 2 (๐œ‘ โ†’ ๐น = (๐‘ฅ โˆˆ (๐ต โ†‘m (๐‘€ ร— ๐‘)), ๐‘ฆ โˆˆ (๐ต โ†‘m (๐‘ ร— ๐‘ƒ)) โ†ฆ (๐‘– โˆˆ ๐‘€, ๐‘˜ โˆˆ ๐‘ƒ โ†ฆ (๐‘… ฮฃg (๐‘— โˆˆ ๐‘ โ†ฆ ((๐‘–๐‘ฅ๐‘—) ยท (๐‘—๐‘ฆ๐‘˜)))))))
9 oveq 7432 . . . . . . 7 (๐‘ฅ = ๐‘‹ โ†’ (๐‘–๐‘ฅ๐‘—) = (๐‘–๐‘‹๐‘—))
10 oveq 7432 . . . . . . 7 (๐‘ฆ = ๐‘Œ โ†’ (๐‘—๐‘ฆ๐‘˜) = (๐‘—๐‘Œ๐‘˜))
119, 10oveqan12d 7445 . . . . . 6 ((๐‘ฅ = ๐‘‹ โˆง ๐‘ฆ = ๐‘Œ) โ†’ ((๐‘–๐‘ฅ๐‘—) ยท (๐‘—๐‘ฆ๐‘˜)) = ((๐‘–๐‘‹๐‘—) ยท (๐‘—๐‘Œ๐‘˜)))
1211adantl 480 . . . . 5 ((๐œ‘ โˆง (๐‘ฅ = ๐‘‹ โˆง ๐‘ฆ = ๐‘Œ)) โ†’ ((๐‘–๐‘ฅ๐‘—) ยท (๐‘—๐‘ฆ๐‘˜)) = ((๐‘–๐‘‹๐‘—) ยท (๐‘—๐‘Œ๐‘˜)))
1312mpteq2dv 5254 . . . 4 ((๐œ‘ โˆง (๐‘ฅ = ๐‘‹ โˆง ๐‘ฆ = ๐‘Œ)) โ†’ (๐‘— โˆˆ ๐‘ โ†ฆ ((๐‘–๐‘ฅ๐‘—) ยท (๐‘—๐‘ฆ๐‘˜))) = (๐‘— โˆˆ ๐‘ โ†ฆ ((๐‘–๐‘‹๐‘—) ยท (๐‘—๐‘Œ๐‘˜))))
1413oveq2d 7442 . . 3 ((๐œ‘ โˆง (๐‘ฅ = ๐‘‹ โˆง ๐‘ฆ = ๐‘Œ)) โ†’ (๐‘… ฮฃg (๐‘— โˆˆ ๐‘ โ†ฆ ((๐‘–๐‘ฅ๐‘—) ยท (๐‘—๐‘ฆ๐‘˜)))) = (๐‘… ฮฃg (๐‘— โˆˆ ๐‘ โ†ฆ ((๐‘–๐‘‹๐‘—) ยท (๐‘—๐‘Œ๐‘˜)))))
1514mpoeq3dv 7505 . 2 ((๐œ‘ โˆง (๐‘ฅ = ๐‘‹ โˆง ๐‘ฆ = ๐‘Œ)) โ†’ (๐‘– โˆˆ ๐‘€, ๐‘˜ โˆˆ ๐‘ƒ โ†ฆ (๐‘… ฮฃg (๐‘— โˆˆ ๐‘ โ†ฆ ((๐‘–๐‘ฅ๐‘—) ยท (๐‘—๐‘ฆ๐‘˜))))) = (๐‘– โˆˆ ๐‘€, ๐‘˜ โˆˆ ๐‘ƒ โ†ฆ (๐‘… ฮฃg (๐‘— โˆˆ ๐‘ โ†ฆ ((๐‘–๐‘‹๐‘—) ยท (๐‘—๐‘Œ๐‘˜))))))
16 mamuval.x . 2 (๐œ‘ โ†’ ๐‘‹ โˆˆ (๐ต โ†‘m (๐‘€ ร— ๐‘)))
17 mamuval.y . 2 (๐œ‘ โ†’ ๐‘Œ โˆˆ (๐ต โ†‘m (๐‘ ร— ๐‘ƒ)))
18 mpoexga 8088 . . 3 ((๐‘€ โˆˆ Fin โˆง ๐‘ƒ โˆˆ Fin) โ†’ (๐‘– โˆˆ ๐‘€, ๐‘˜ โˆˆ ๐‘ƒ โ†ฆ (๐‘… ฮฃg (๐‘— โˆˆ ๐‘ โ†ฆ ((๐‘–๐‘‹๐‘—) ยท (๐‘—๐‘Œ๐‘˜))))) โˆˆ V)
195, 7, 18syl2anc 582 . 2 (๐œ‘ โ†’ (๐‘– โˆˆ ๐‘€, ๐‘˜ โˆˆ ๐‘ƒ โ†ฆ (๐‘… ฮฃg (๐‘— โˆˆ ๐‘ โ†ฆ ((๐‘–๐‘‹๐‘—) ยท (๐‘—๐‘Œ๐‘˜))))) โˆˆ V)
208, 15, 16, 17, 19ovmpod 7579 1 (๐œ‘ โ†’ (๐‘‹๐น๐‘Œ) = (๐‘– โˆˆ ๐‘€, ๐‘˜ โˆˆ ๐‘ƒ โ†ฆ (๐‘… ฮฃg (๐‘— โˆˆ ๐‘ โ†ฆ ((๐‘–๐‘‹๐‘—) ยท (๐‘—๐‘Œ๐‘˜))))))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 394   = wceq 1533   โˆˆ wcel 2098  Vcvv 3473  โŸจcotp 4640   โ†ฆ cmpt 5235   ร— cxp 5680  โ€˜cfv 6553  (class class class)co 7426   โˆˆ cmpo 7428   โ†‘m cmap 8851  Fincfn 8970  Basecbs 17187  .rcmulr 17241   ฮฃg cgsu 17429   maMul cmmul 22305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-ot 4641  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-mamu 22306
This theorem is referenced by:  mamufv  22309  mamures  22312  mamucl  22321  mpomatmul  22368  mamutpos  22380  mat1dimmul  22398  dmatmul  22419  madurid  22566  cramerimplem2  22606  mat2pmatmul  22653  decpmatmul  22694
  Copyright terms: Public domain W3C validator