![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mamuval | Structured version Visualization version GIF version |
Description: Multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
Ref | Expression |
---|---|
mamufval.f | ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) |
mamufval.b | ⊢ 𝐵 = (Base‘𝑅) |
mamufval.t | ⊢ · = (.r‘𝑅) |
mamufval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
mamufval.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
mamufval.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mamufval.p | ⊢ (𝜑 → 𝑃 ∈ Fin) |
mamuval.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
mamuval.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) |
Ref | Expression |
---|---|
mamuval | ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mamufval.f | . . 3 ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) | |
2 | mamufval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | mamufval.t | . . 3 ⊢ · = (.r‘𝑅) | |
4 | mamufval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
5 | mamufval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
6 | mamufval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
7 | mamufval.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ Fin) | |
8 | 1, 2, 3, 4, 5, 6, 7 | mamufval 22411 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐵 ↑m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵 ↑m (𝑁 × 𝑃)) ↦ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))))))) |
9 | oveq 7436 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑖𝑥𝑗) = (𝑖𝑋𝑗)) | |
10 | oveq 7436 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑗𝑦𝑘) = (𝑗𝑌𝑘)) | |
11 | 9, 10 | oveqan12d 7449 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)) = ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))) |
12 | 11 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)) = ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))) |
13 | 12 | mpteq2dv 5249 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))) |
14 | 13 | oveq2d 7446 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))))) |
15 | 14 | mpoeq3dv 7511 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))))) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))))) |
16 | mamuval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) | |
17 | mamuval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) | |
18 | mpoexga 8100 | . . 3 ⊢ ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))))) ∈ V) | |
19 | 5, 7, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))))) ∈ V) |
20 | 8, 15, 16, 17, 19 | ovmpod 7584 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 〈cotp 4638 ↦ cmpt 5230 × cxp 5686 ‘cfv 6562 (class class class)co 7430 ∈ cmpo 7432 ↑m cmap 8864 Fincfn 8983 Basecbs 17244 .rcmulr 17298 Σg cgsu 17486 maMul cmmul 22409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-ot 4639 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-mamu 22410 |
This theorem is referenced by: mamufv 22413 mamures 22416 mamucl 22420 mpomatmul 22467 mamutpos 22479 mat1dimmul 22497 dmatmul 22518 madurid 22665 cramerimplem2 22705 mat2pmatmul 22752 decpmatmul 22793 |
Copyright terms: Public domain | W3C validator |