Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mamuval | Structured version Visualization version GIF version |
Description: Multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
Ref | Expression |
---|---|
mamufval.f | ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) |
mamufval.b | ⊢ 𝐵 = (Base‘𝑅) |
mamufval.t | ⊢ · = (.r‘𝑅) |
mamufval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
mamufval.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
mamufval.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mamufval.p | ⊢ (𝜑 → 𝑃 ∈ Fin) |
mamuval.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
mamuval.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) |
Ref | Expression |
---|---|
mamuval | ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mamufval.f | . . 3 ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) | |
2 | mamufval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | mamufval.t | . . 3 ⊢ · = (.r‘𝑅) | |
4 | mamufval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
5 | mamufval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
6 | mamufval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
7 | mamufval.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ Fin) | |
8 | 1, 2, 3, 4, 5, 6, 7 | mamufval 21444 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ (𝐵 ↑m (𝑀 × 𝑁)), 𝑦 ∈ (𝐵 ↑m (𝑁 × 𝑃)) ↦ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))))))) |
9 | oveq 7261 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑖𝑥𝑗) = (𝑖𝑋𝑗)) | |
10 | oveq 7261 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (𝑗𝑦𝑘) = (𝑗𝑌𝑘)) | |
11 | 9, 10 | oveqan12d 7274 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)) = ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))) |
12 | 11 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)) = ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))) |
13 | 12 | mpteq2dv 5172 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))) |
14 | 13 | oveq2d 7271 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))))) |
15 | 14 | mpoeq3dv 7332 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑥𝑗) · (𝑗𝑦𝑘))))) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))))) |
16 | mamuval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) | |
17 | mamuval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) | |
18 | mpoexga 7891 | . . 3 ⊢ ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))))) ∈ V) | |
19 | 5, 7, 18 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))))) ∈ V) |
20 | 8, 15, 16, 17, 19 | ovmpod 7403 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cotp 4566 ↦ cmpt 5153 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ↑m cmap 8573 Fincfn 8691 Basecbs 16840 .rcmulr 16889 Σg cgsu 17068 maMul cmmul 21442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-ot 4567 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-mamu 21443 |
This theorem is referenced by: mamufv 21446 mamures 21449 mamucl 21458 mpomatmul 21503 mamutpos 21515 mat1dimmul 21533 dmatmul 21554 madurid 21701 cramerimplem2 21741 mat2pmatmul 21788 decpmatmul 21829 |
Copyright terms: Public domain | W3C validator |