MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marepvval0 Structured version   Visualization version   GIF version

Theorem marepvval0 22482
Description: Second substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvfval.a 𝐴 = (𝑁 Mat 𝑅)
marepvfval.b 𝐵 = (Base‘𝐴)
marepvfval.q 𝑄 = (𝑁 matRepV 𝑅)
marepvfval.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
Assertion
Ref Expression
marepvval0 ((𝑀𝐵𝐶𝑉) → (𝑀𝑄𝐶) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
Distinct variable groups:   𝑖,𝑁,𝑗,𝑘   𝑅,𝑖,𝑗,𝑘   𝐶,𝑖,𝑗,𝑘   𝑖,𝑀,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘)   𝐵(𝑖,𝑗,𝑘)   𝑄(𝑖,𝑗,𝑘)   𝑉(𝑖,𝑗,𝑘)

Proof of Theorem marepvval0
Dummy variables 𝑚 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marepvfval.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
2 marepvfval.b . . . . . 6 𝐵 = (Base‘𝐴)
31, 2matrcl 22328 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 494 . . . 4 (𝑀𝐵𝑁 ∈ Fin)
54adantr 480 . . 3 ((𝑀𝐵𝐶𝑉) → 𝑁 ∈ Fin)
65mptexd 7164 . 2 ((𝑀𝐵𝐶𝑉) → (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))) ∈ V)
7 fveq1 6827 . . . . . . 7 (𝑐 = 𝐶 → (𝑐𝑖) = (𝐶𝑖))
87adantl 481 . . . . . 6 ((𝑚 = 𝑀𝑐 = 𝐶) → (𝑐𝑖) = (𝐶𝑖))
9 oveq 7358 . . . . . . 7 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
109adantr 480 . . . . . 6 ((𝑚 = 𝑀𝑐 = 𝐶) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
118, 10ifeq12d 4496 . . . . 5 ((𝑚 = 𝑀𝑐 = 𝐶) → if(𝑗 = 𝑘, (𝑐𝑖), (𝑖𝑚𝑗)) = if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))
1211mpoeq3dv 7431 . . . 4 ((𝑚 = 𝑀𝑐 = 𝐶) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑐𝑖), (𝑖𝑚𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))
1312mpteq2dv 5187 . . 3 ((𝑚 = 𝑀𝑐 = 𝐶) → (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑐𝑖), (𝑖𝑚𝑗)))) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
14 marepvfval.q . . . 4 𝑄 = (𝑁 matRepV 𝑅)
15 marepvfval.v . . . 4 𝑉 = ((Base‘𝑅) ↑m 𝑁)
161, 2, 14, 15marepvfval 22481 . . 3 𝑄 = (𝑚𝐵, 𝑐𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑐𝑖), (𝑖𝑚𝑗)))))
1713, 16ovmpoga 7506 . 2 ((𝑀𝐵𝐶𝑉 ∧ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))) ∈ V) → (𝑀𝑄𝐶) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
186, 17mpd3an3 1464 1 ((𝑀𝐵𝐶𝑉) → (𝑀𝑄𝐶) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  ifcif 4474  cmpt 5174  cfv 6486  (class class class)co 7352  cmpo 7354  m cmap 8756  Fincfn 8875  Basecbs 17122   Mat cmat 22323   matRepV cmatrepV 22473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-1cn 11071  ax-addcl 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-nn 12133  df-slot 17095  df-ndx 17107  df-base 17123  df-mat 22324  df-marepv 22475
This theorem is referenced by:  marepvval  22483
  Copyright terms: Public domain W3C validator