| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > marepvval0 | Structured version Visualization version GIF version | ||
| Description: Second substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| Ref | Expression |
|---|---|
| marepvfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| marepvfval.b | ⊢ 𝐵 = (Base‘𝐴) |
| marepvfval.q | ⊢ 𝑄 = (𝑁 matRepV 𝑅) |
| marepvfval.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
| Ref | Expression |
|---|---|
| marepvval0 | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑀𝑄𝐶) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | marepvfval.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | marepvfval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | 1, 2 | matrcl 22325 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 4 | 3 | simpld 494 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → 𝑁 ∈ Fin) |
| 6 | 5 | mptexd 7158 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗)))) ∈ V) |
| 7 | fveq1 6821 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (𝑐‘𝑖) = (𝐶‘𝑖)) | |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝑚 = 𝑀 ∧ 𝑐 = 𝐶) → (𝑐‘𝑖) = (𝐶‘𝑖)) |
| 9 | oveq 7352 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) | |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝑚 = 𝑀 ∧ 𝑐 = 𝐶) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) |
| 11 | 8, 10 | ifeq12d 4497 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑐 = 𝐶) → if(𝑗 = 𝑘, (𝑐‘𝑖), (𝑖𝑚𝑗)) = if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))) |
| 12 | 11 | mpoeq3dv 7425 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑐 = 𝐶) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑐‘𝑖), (𝑖𝑚𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
| 13 | 12 | mpteq2dv 5185 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑐 = 𝐶) → (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑐‘𝑖), (𝑖𝑚𝑗)))) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) |
| 14 | marepvfval.q | . . . 4 ⊢ 𝑄 = (𝑁 matRepV 𝑅) | |
| 15 | marepvfval.v | . . . 4 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
| 16 | 1, 2, 14, 15 | marepvfval 22478 | . . 3 ⊢ 𝑄 = (𝑚 ∈ 𝐵, 𝑐 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑐‘𝑖), (𝑖𝑚𝑗))))) |
| 17 | 13, 16 | ovmpoga 7500 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗)))) ∈ V) → (𝑀𝑄𝐶) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) |
| 18 | 6, 17 | mpd3an3 1464 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑀𝑄𝐶) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ifcif 4475 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ↑m cmap 8750 Fincfn 8869 Basecbs 17117 Mat cmat 22320 matRepV cmatrepV 22470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-slot 17090 df-ndx 17102 df-base 17118 df-mat 22321 df-marepv 22472 |
| This theorem is referenced by: marepvval 22480 |
| Copyright terms: Public domain | W3C validator |