Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > marepvval0 | Structured version Visualization version GIF version |
Description: Second substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
Ref | Expression |
---|---|
marepvfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marepvfval.b | ⊢ 𝐵 = (Base‘𝐴) |
marepvfval.q | ⊢ 𝑄 = (𝑁 matRepV 𝑅) |
marepvfval.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
Ref | Expression |
---|---|
marepvval0 | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑀𝑄𝐶) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marepvfval.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | marepvfval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 21557 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | simpld 495 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
5 | 4 | adantr 481 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → 𝑁 ∈ Fin) |
6 | 5 | mptexd 7097 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗)))) ∈ V) |
7 | fveq1 6770 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (𝑐‘𝑖) = (𝐶‘𝑖)) | |
8 | 7 | adantl 482 | . . . . . 6 ⊢ ((𝑚 = 𝑀 ∧ 𝑐 = 𝐶) → (𝑐‘𝑖) = (𝐶‘𝑖)) |
9 | oveq 7277 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) | |
10 | 9 | adantr 481 | . . . . . 6 ⊢ ((𝑚 = 𝑀 ∧ 𝑐 = 𝐶) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) |
11 | 8, 10 | ifeq12d 4486 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑐 = 𝐶) → if(𝑗 = 𝑘, (𝑐‘𝑖), (𝑖𝑚𝑗)) = if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))) |
12 | 11 | mpoeq3dv 7348 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑐 = 𝐶) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑐‘𝑖), (𝑖𝑚𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
13 | 12 | mpteq2dv 5181 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑐 = 𝐶) → (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑐‘𝑖), (𝑖𝑚𝑗)))) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) |
14 | marepvfval.q | . . . 4 ⊢ 𝑄 = (𝑁 matRepV 𝑅) | |
15 | marepvfval.v | . . . 4 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
16 | 1, 2, 14, 15 | marepvfval 21712 | . . 3 ⊢ 𝑄 = (𝑚 ∈ 𝐵, 𝑐 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑐‘𝑖), (𝑖𝑚𝑗))))) |
17 | 13, 16 | ovmpoga 7421 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗)))) ∈ V) → (𝑀𝑄𝐶) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) |
18 | 6, 17 | mpd3an3 1461 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑀𝑄𝐶) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ifcif 4465 ↦ cmpt 5162 ‘cfv 6432 (class class class)co 7271 ∈ cmpo 7273 ↑m cmap 8598 Fincfn 8716 Basecbs 16910 Mat cmat 21552 matRepV cmatrepV 21704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-1cn 10930 ax-addcl 10932 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-nn 11974 df-slot 16881 df-ndx 16893 df-base 16911 df-mat 21553 df-marepv 21706 |
This theorem is referenced by: marepvval 21714 |
Copyright terms: Public domain | W3C validator |