![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > marepvval0 | Structured version Visualization version GIF version |
Description: Second substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
Ref | Expression |
---|---|
marepvfval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marepvfval.b | ⊢ 𝐵 = (Base‘𝐴) |
marepvfval.q | ⊢ 𝑄 = (𝑁 matRepV 𝑅) |
marepvfval.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
Ref | Expression |
---|---|
marepvval0 | ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑀𝑄𝐶) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marepvfval.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | marepvfval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 21782 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | simpld 496 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
5 | 4 | adantr 482 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → 𝑁 ∈ Fin) |
6 | 5 | mptexd 7178 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗)))) ∈ V) |
7 | fveq1 6845 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (𝑐‘𝑖) = (𝐶‘𝑖)) | |
8 | 7 | adantl 483 | . . . . . 6 ⊢ ((𝑚 = 𝑀 ∧ 𝑐 = 𝐶) → (𝑐‘𝑖) = (𝐶‘𝑖)) |
9 | oveq 7367 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) | |
10 | 9 | adantr 482 | . . . . . 6 ⊢ ((𝑚 = 𝑀 ∧ 𝑐 = 𝐶) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗)) |
11 | 8, 10 | ifeq12d 4511 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑐 = 𝐶) → if(𝑗 = 𝑘, (𝑐‘𝑖), (𝑖𝑚𝑗)) = if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))) |
12 | 11 | mpoeq3dv 7440 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑐 = 𝐶) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑐‘𝑖), (𝑖𝑚𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗)))) |
13 | 12 | mpteq2dv 5211 | . . 3 ⊢ ((𝑚 = 𝑀 ∧ 𝑐 = 𝐶) → (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑐‘𝑖), (𝑖𝑚𝑗)))) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) |
14 | marepvfval.q | . . . 4 ⊢ 𝑄 = (𝑁 matRepV 𝑅) | |
15 | marepvfval.v | . . . 4 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
16 | 1, 2, 14, 15 | marepvfval 21937 | . . 3 ⊢ 𝑄 = (𝑚 ∈ 𝐵, 𝑐 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑐‘𝑖), (𝑖𝑚𝑗))))) |
17 | 13, 16 | ovmpoga 7513 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗)))) ∈ V) → (𝑀𝑄𝐶) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) |
18 | 6, 17 | mpd3an3 1463 | 1 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑀𝑄𝐶) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝐶‘𝑖), (𝑖𝑀𝑗))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3447 ifcif 4490 ↦ cmpt 5192 ‘cfv 6500 (class class class)co 7361 ∈ cmpo 7363 ↑m cmap 8771 Fincfn 8889 Basecbs 17091 Mat cmat 21777 matRepV cmatrepV 21929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-1cn 11117 ax-addcl 11119 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-nn 12162 df-slot 17062 df-ndx 17074 df-base 17092 df-mat 21778 df-marepv 21931 |
This theorem is referenced by: marepvval 21939 |
Copyright terms: Public domain | W3C validator |