MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marepvval0 Structured version   Visualization version   GIF version

Theorem marepvval0 22573
Description: Second substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvfval.a 𝐴 = (𝑁 Mat 𝑅)
marepvfval.b 𝐵 = (Base‘𝐴)
marepvfval.q 𝑄 = (𝑁 matRepV 𝑅)
marepvfval.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
Assertion
Ref Expression
marepvval0 ((𝑀𝐵𝐶𝑉) → (𝑀𝑄𝐶) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
Distinct variable groups:   𝑖,𝑁,𝑗,𝑘   𝑅,𝑖,𝑗,𝑘   𝐶,𝑖,𝑗,𝑘   𝑖,𝑀,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘)   𝐵(𝑖,𝑗,𝑘)   𝑄(𝑖,𝑗,𝑘)   𝑉(𝑖,𝑗,𝑘)

Proof of Theorem marepvval0
Dummy variables 𝑚 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marepvfval.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
2 marepvfval.b . . . . . 6 𝐵 = (Base‘𝐴)
31, 2matrcl 22417 . . . . 5 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 494 . . . 4 (𝑀𝐵𝑁 ∈ Fin)
54adantr 480 . . 3 ((𝑀𝐵𝐶𝑉) → 𝑁 ∈ Fin)
65mptexd 7245 . 2 ((𝑀𝐵𝐶𝑉) → (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))) ∈ V)
7 fveq1 6904 . . . . . . 7 (𝑐 = 𝐶 → (𝑐𝑖) = (𝐶𝑖))
87adantl 481 . . . . . 6 ((𝑚 = 𝑀𝑐 = 𝐶) → (𝑐𝑖) = (𝐶𝑖))
9 oveq 7438 . . . . . . 7 (𝑚 = 𝑀 → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
109adantr 480 . . . . . 6 ((𝑚 = 𝑀𝑐 = 𝐶) → (𝑖𝑚𝑗) = (𝑖𝑀𝑗))
118, 10ifeq12d 4546 . . . . 5 ((𝑚 = 𝑀𝑐 = 𝐶) → if(𝑗 = 𝑘, (𝑐𝑖), (𝑖𝑚𝑗)) = if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))
1211mpoeq3dv 7513 . . . 4 ((𝑚 = 𝑀𝑐 = 𝐶) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑐𝑖), (𝑖𝑚𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗))))
1312mpteq2dv 5243 . . 3 ((𝑚 = 𝑀𝑐 = 𝐶) → (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑐𝑖), (𝑖𝑚𝑗)))) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
14 marepvfval.q . . . 4 𝑄 = (𝑁 matRepV 𝑅)
15 marepvfval.v . . . 4 𝑉 = ((Base‘𝑅) ↑m 𝑁)
161, 2, 14, 15marepvfval 22572 . . 3 𝑄 = (𝑚𝐵, 𝑐𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑐𝑖), (𝑖𝑚𝑗)))))
1713, 16ovmpoga 7588 . 2 ((𝑀𝐵𝐶𝑉 ∧ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))) ∈ V) → (𝑀𝑄𝐶) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
186, 17mpd3an3 1463 1 ((𝑀𝐵𝐶𝑉) → (𝑀𝑄𝐶) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝐶𝑖), (𝑖𝑀𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  ifcif 4524  cmpt 5224  cfv 6560  (class class class)co 7432  cmpo 7434  m cmap 8867  Fincfn 8986  Basecbs 17248   Mat cmat 22412   matRepV cmatrepV 22564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-1cn 11214  ax-addcl 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-nn 12268  df-slot 17220  df-ndx 17232  df-base 17249  df-mat 22413  df-marepv 22566
This theorem is referenced by:  marepvval  22574
  Copyright terms: Public domain W3C validator