![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > maduval | Structured version Visualization version GIF version |
Description: Second substitution for the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.) |
Ref | Expression |
---|---|
madufval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
madufval.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
madufval.j | ⊢ 𝐽 = (𝑁 maAdju 𝑅) |
madufval.b | ⊢ 𝐵 = (Base‘𝐴) |
madufval.o | ⊢ 1 = (1r‘𝑅) |
madufval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
maduval | ⊢ (𝑀 ∈ 𝐵 → (𝐽‘𝑀) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | madufval.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | madufval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 22262 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | simpld 494 | . . 3 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
5 | mpoexga 8060 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))))) ∈ V) | |
6 | 4, 4, 5 | syl2anc 583 | . 2 ⊢ (𝑀 ∈ 𝐵 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))))) ∈ V) |
7 | oveq 7410 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑘𝑚𝑙) = (𝑘𝑀𝑙)) | |
8 | 7 | ifeq2d 4543 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))) |
9 | 8 | mpoeq3dv 7483 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) |
10 | 9 | 3ad2ant1 1130 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) |
11 | 10 | fveq2d 6888 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))))) |
12 | 11 | mpoeq3dva 7481 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))))) |
13 | madufval.d | . . . 4 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
14 | madufval.j | . . . 4 ⊢ 𝐽 = (𝑁 maAdju 𝑅) | |
15 | madufval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
16 | madufval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
17 | 1, 13, 14, 2, 15, 16 | madufval 22489 | . . 3 ⊢ 𝐽 = (𝑚 ∈ 𝐵 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) |
18 | 12, 17 | fvmptg 6989 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))))) ∈ V) → (𝐽‘𝑀) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))))) |
19 | 6, 18 | mpdan 684 | 1 ⊢ (𝑀 ∈ 𝐵 → (𝐽‘𝑀) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ifcif 4523 ‘cfv 6536 (class class class)co 7404 ∈ cmpo 7406 Fincfn 8938 Basecbs 17150 0gc0g 17391 1rcur 20083 Mat cmat 22257 maDet cmdat 22436 maAdju cmadu 22484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-1cn 11167 ax-addcl 11169 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-nn 12214 df-slot 17121 df-ndx 17133 df-base 17151 df-mat 22258 df-madu 22486 |
This theorem is referenced by: maducoeval 22491 |
Copyright terms: Public domain | W3C validator |