| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > maduval | Structured version Visualization version GIF version | ||
| Description: Second substitution for the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.) |
| Ref | Expression |
|---|---|
| madufval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| madufval.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
| madufval.j | ⊢ 𝐽 = (𝑁 maAdju 𝑅) |
| madufval.b | ⊢ 𝐵 = (Base‘𝐴) |
| madufval.o | ⊢ 1 = (1r‘𝑅) |
| madufval.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| maduval | ⊢ (𝑀 ∈ 𝐵 → (𝐽‘𝑀) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | madufval.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | madufval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | 1, 2 | matrcl 22383 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 4 | 3 | simpld 494 | . . 3 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 5 | mpoexga 8085 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))))) ∈ V) | |
| 6 | 4, 4, 5 | syl2anc 584 | . 2 ⊢ (𝑀 ∈ 𝐵 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))))) ∈ V) |
| 7 | oveq 7420 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑘𝑚𝑙) = (𝑘𝑀𝑙)) | |
| 8 | 7 | ifeq2d 4528 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))) |
| 9 | 8 | mpoeq3dv 7495 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) |
| 10 | 9 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑚 = 𝑀 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))) = (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))) |
| 11 | 10 | fveq2d 6891 | . . . 4 ⊢ ((𝑚 = 𝑀 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))) = (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))))) |
| 12 | 11 | mpoeq3dva 7493 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))))) |
| 13 | madufval.d | . . . 4 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
| 14 | madufval.j | . . . 4 ⊢ 𝐽 = (𝑁 maAdju 𝑅) | |
| 15 | madufval.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 16 | madufval.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 17 | 1, 13, 14, 2, 15, 16 | madufval 22610 | . . 3 ⊢ 𝐽 = (𝑚 ∈ 𝐵 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) |
| 18 | 12, 17 | fvmptg 6995 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙))))) ∈ V) → (𝐽‘𝑀) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))))) |
| 19 | 6, 18 | mpdan 687 | 1 ⊢ (𝑀 ∈ 𝐵 → (𝐽‘𝑀) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝐷‘(𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑀𝑙)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ifcif 4507 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 Fincfn 8968 Basecbs 17230 0gc0g 17460 1rcur 20151 Mat cmat 22378 maDet cmdat 22557 maAdju cmadu 22605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-1cn 11196 ax-addcl 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-nn 12250 df-slot 17202 df-ndx 17214 df-base 17231 df-mat 22379 df-madu 22607 |
| This theorem is referenced by: maducoeval 22612 |
| Copyright terms: Public domain | W3C validator |