| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptid | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvmptid.1 | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| Ref | Expression |
|---|---|
| dvmptid | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝑥)) = (𝑥 ∈ 𝑆 ↦ 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 2 | dvmptid.1 | . 2 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 3 | 1 | cnfldtopon 24698 | . . 3 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 4 | toponmax 22842 | . . 3 ⊢ ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld)) | |
| 5 | 3, 4 | mp1i 13 | . 2 ⊢ (𝜑 → ℂ ∈ (TopOpen‘ℂfld)) |
| 6 | recnprss 25833 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 7 | 2, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 8 | dfss2 3920 | . . 3 ⊢ (𝑆 ⊆ ℂ ↔ (𝑆 ∩ ℂ) = 𝑆) | |
| 9 | 7, 8 | sylib 218 | . 2 ⊢ (𝜑 → (𝑆 ∩ ℂ) = 𝑆) |
| 10 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
| 11 | 1cnd 11107 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ) | |
| 12 | mptresid 6000 | . . . . . 6 ⊢ ( I ↾ ℂ) = (𝑥 ∈ ℂ ↦ 𝑥) | |
| 13 | 12 | eqcomi 2740 | . . . . 5 ⊢ (𝑥 ∈ ℂ ↦ 𝑥) = ( I ↾ ℂ) |
| 14 | 13 | oveq2i 7357 | . . . 4 ⊢ (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (ℂ D ( I ↾ ℂ)) |
| 15 | dvid 25847 | . . . 4 ⊢ (ℂ D ( I ↾ ℂ)) = (ℂ × {1}) | |
| 16 | fconstmpt 5678 | . . . 4 ⊢ (ℂ × {1}) = (𝑥 ∈ ℂ ↦ 1) | |
| 17 | 14, 15, 16 | 3eqtri 2758 | . . 3 ⊢ (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1) |
| 18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1)) |
| 19 | 1, 2, 5, 9, 10, 11, 18 | dvmptres3 25888 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝑥)) = (𝑥 ∈ 𝑆 ↦ 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 {csn 4576 {cpr 4578 ↦ cmpt 5172 I cid 5510 × cxp 5614 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 1c1 11007 TopOpenctopn 17325 ℂfldccnfld 21292 TopOnctopon 22826 D cdv 25792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-icc 13252 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-fbas 21289 df-fg 21290 df-cnfld 21293 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-cncf 24799 df-limc 25795 df-dv 25796 |
| This theorem is referenced by: dvef 25912 dvsincos 25913 mvth 25925 dvlipcn 25927 dvivthlem1 25941 lhop2 25948 dvfsumle 25954 dvfsumleOLD 25955 dvfsumabs 25957 dvfsumlem2 25961 dvfsumlem2OLD 25962 dvtaylp 26306 taylthlem2 26310 taylthlem2OLD 26311 pige3ALT 26457 advlog 26591 advlogexp 26592 logtayl 26597 dvcxp1 26677 dvcxp2 26678 dvcncxp1 26680 loglesqrt 26699 dvatan 26873 lgamgulmlem2 26968 log2sumbnd 27483 itgexpif 34617 dvasin 37750 areacirclem1 37754 lcmineqlem7 42074 lcmineqlem12 42079 redvmptabs 42399 lhe4.4ex1a 44368 expgrowthi 44372 expgrowth 44374 binomcxplemdvbinom 44392 dvsinax 45957 dvmptidg 45961 dvcosax 45970 itgiccshift 46024 itgperiod 46025 itgsbtaddcnst 46026 dirkeritg 46146 fourierdlem39 46190 fourierdlem56 46206 fourierdlem60 46210 fourierdlem61 46211 fourierdlem62 46212 etransclem46 46324 |
| Copyright terms: Public domain | W3C validator |