| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvmptid | Structured version Visualization version GIF version | ||
| Description: Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvmptid.1 | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| Ref | Expression |
|---|---|
| dvmptid | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝑥)) = (𝑥 ∈ 𝑆 ↦ 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . 2 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 2 | dvmptid.1 | . 2 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 3 | 1 | cnfldtopon 24700 | . . 3 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 4 | toponmax 22844 | . . 3 ⊢ ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld)) | |
| 5 | 3, 4 | mp1i 13 | . 2 ⊢ (𝜑 → ℂ ∈ (TopOpen‘ℂfld)) |
| 6 | recnprss 25835 | . . . 4 ⊢ (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ) | |
| 7 | 2, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 8 | dfss2 3916 | . . 3 ⊢ (𝑆 ⊆ ℂ ↔ (𝑆 ∩ ℂ) = 𝑆) | |
| 9 | 7, 8 | sylib 218 | . 2 ⊢ (𝜑 → (𝑆 ∩ ℂ) = 𝑆) |
| 10 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
| 11 | 1cnd 11116 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ) | |
| 12 | mptresid 6006 | . . . . . 6 ⊢ ( I ↾ ℂ) = (𝑥 ∈ ℂ ↦ 𝑥) | |
| 13 | 12 | eqcomi 2742 | . . . . 5 ⊢ (𝑥 ∈ ℂ ↦ 𝑥) = ( I ↾ ℂ) |
| 14 | 13 | oveq2i 7365 | . . . 4 ⊢ (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (ℂ D ( I ↾ ℂ)) |
| 15 | dvid 25849 | . . . 4 ⊢ (ℂ D ( I ↾ ℂ)) = (ℂ × {1}) | |
| 16 | fconstmpt 5683 | . . . 4 ⊢ (ℂ × {1}) = (𝑥 ∈ ℂ ↦ 1) | |
| 17 | 14, 15, 16 | 3eqtri 2760 | . . 3 ⊢ (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1) |
| 18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1)) |
| 19 | 1, 2, 5, 9, 10, 11, 18 | dvmptres3 25890 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 𝑥)) = (𝑥 ∈ 𝑆 ↦ 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 {csn 4577 {cpr 4579 ↦ cmpt 5176 I cid 5515 × cxp 5619 ↾ cres 5623 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 ℝcr 11014 1c1 11016 TopOpenctopn 17329 ℂfldccnfld 21295 TopOnctopon 22828 D cdv 25794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fi 9304 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-icc 13256 df-fz 13412 df-seq 13913 df-exp 13973 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-struct 17062 df-slot 17097 df-ndx 17109 df-base 17125 df-plusg 17178 df-mulr 17179 df-starv 17180 df-tset 17184 df-ple 17185 df-ds 17187 df-unif 17188 df-rest 17330 df-topn 17331 df-topgen 17351 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 df-mopn 21291 df-fbas 21292 df-fg 21293 df-cnfld 21296 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22864 df-cld 22937 df-ntr 22938 df-cls 22939 df-nei 23016 df-lp 23054 df-perf 23055 df-cn 23145 df-cnp 23146 df-haus 23233 df-fil 23764 df-fm 23856 df-flim 23857 df-flf 23858 df-xms 24238 df-ms 24239 df-cncf 24801 df-limc 25797 df-dv 25798 |
| This theorem is referenced by: dvef 25914 dvsincos 25915 mvth 25927 dvlipcn 25929 dvivthlem1 25943 lhop2 25950 dvfsumle 25956 dvfsumleOLD 25957 dvfsumabs 25959 dvfsumlem2 25963 dvfsumlem2OLD 25964 dvtaylp 26308 taylthlem2 26312 taylthlem2OLD 26313 pige3ALT 26459 advlog 26593 advlogexp 26594 logtayl 26599 dvcxp1 26679 dvcxp2 26680 dvcncxp1 26682 loglesqrt 26701 dvatan 26875 lgamgulmlem2 26970 log2sumbnd 27485 itgexpif 34642 dvasin 37767 areacirclem1 37771 lcmineqlem7 42151 lcmineqlem12 42156 redvmptabs 42481 lhe4.4ex1a 44449 expgrowthi 44453 expgrowth 44455 binomcxplemdvbinom 44473 dvsinax 46038 dvmptidg 46042 dvcosax 46051 itgiccshift 46105 itgperiod 46106 itgsbtaddcnst 46107 dirkeritg 46227 fourierdlem39 46271 fourierdlem56 46287 fourierdlem60 46291 fourierdlem61 46292 fourierdlem62 46293 etransclem46 46405 |
| Copyright terms: Public domain | W3C validator |