![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcoval0mpt | Structured version Visualization version GIF version |
Description: A mapping iterated zero times (defined as identity function). (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
itcoval0mpt.f | ⊢ 𝐹 = (𝑛 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
itcoval0mpt | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑛 ∈ 𝐴 𝐵 ∈ 𝑊) → ((IterComp‘𝐹)‘0) = (𝑛 ∈ 𝐴 ↦ 𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itcoval0mpt.f | . . . . 5 ⊢ 𝐹 = (𝑛 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | fveq2i 6845 | . . . 4 ⊢ (IterComp‘𝐹) = (IterComp‘(𝑛 ∈ 𝐴 ↦ 𝐵)) |
3 | 2 | fveq1i 6843 | . . 3 ⊢ ((IterComp‘𝐹)‘0) = ((IterComp‘(𝑛 ∈ 𝐴 ↦ 𝐵))‘0) |
4 | mptexg 7171 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑛 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
5 | itcoval0 46738 | . . . 4 ⊢ ((𝑛 ∈ 𝐴 ↦ 𝐵) ∈ V → ((IterComp‘(𝑛 ∈ 𝐴 ↦ 𝐵))‘0) = ( I ↾ dom (𝑛 ∈ 𝐴 ↦ 𝐵))) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((IterComp‘(𝑛 ∈ 𝐴 ↦ 𝐵))‘0) = ( I ↾ dom (𝑛 ∈ 𝐴 ↦ 𝐵))) |
7 | 3, 6 | eqtrid 2788 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((IterComp‘𝐹)‘0) = ( I ↾ dom (𝑛 ∈ 𝐴 ↦ 𝐵))) |
8 | dmmptg 6194 | . . . 4 ⊢ (∀𝑛 ∈ 𝐴 𝐵 ∈ 𝑊 → dom (𝑛 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
9 | 8 | reseq2d 5937 | . . 3 ⊢ (∀𝑛 ∈ 𝐴 𝐵 ∈ 𝑊 → ( I ↾ dom (𝑛 ∈ 𝐴 ↦ 𝐵)) = ( I ↾ 𝐴)) |
10 | mptresid 6004 | . . 3 ⊢ ( I ↾ 𝐴) = (𝑛 ∈ 𝐴 ↦ 𝑛) | |
11 | 9, 10 | eqtrdi 2792 | . 2 ⊢ (∀𝑛 ∈ 𝐴 𝐵 ∈ 𝑊 → ( I ↾ dom (𝑛 ∈ 𝐴 ↦ 𝐵)) = (𝑛 ∈ 𝐴 ↦ 𝑛)) |
12 | 7, 11 | sylan9eq 2796 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑛 ∈ 𝐴 𝐵 ∈ 𝑊) → ((IterComp‘𝐹)‘0) = (𝑛 ∈ 𝐴 ↦ 𝑛)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 Vcvv 3445 ↦ cmpt 5188 I cid 5530 dom cdm 5633 ↾ cres 5635 ‘cfv 6496 0cc0 11051 IterCompcitco 46733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-n0 12414 df-z 12500 df-uz 12764 df-seq 13907 df-itco 46735 |
This theorem is referenced by: itcovalpclem1 46746 itcovalt2lem1 46751 |
Copyright terms: Public domain | W3C validator |