![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcoval0mpt | Structured version Visualization version GIF version |
Description: A mapping iterated zero times (defined as identity function). (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
itcoval0mpt.f | β’ πΉ = (π β π΄ β¦ π΅) |
Ref | Expression |
---|---|
itcoval0mpt | β’ ((π΄ β π β§ βπ β π΄ π΅ β π) β ((IterCompβπΉ)β0) = (π β π΄ β¦ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itcoval0mpt.f | . . . . 5 β’ πΉ = (π β π΄ β¦ π΅) | |
2 | 1 | fveq2i 6884 | . . . 4 β’ (IterCompβπΉ) = (IterCompβ(π β π΄ β¦ π΅)) |
3 | 2 | fveq1i 6882 | . . 3 β’ ((IterCompβπΉ)β0) = ((IterCompβ(π β π΄ β¦ π΅))β0) |
4 | mptexg 7214 | . . . 4 β’ (π΄ β π β (π β π΄ β¦ π΅) β V) | |
5 | itcoval0 47536 | . . . 4 β’ ((π β π΄ β¦ π΅) β V β ((IterCompβ(π β π΄ β¦ π΅))β0) = ( I βΎ dom (π β π΄ β¦ π΅))) | |
6 | 4, 5 | syl 17 | . . 3 β’ (π΄ β π β ((IterCompβ(π β π΄ β¦ π΅))β0) = ( I βΎ dom (π β π΄ β¦ π΅))) |
7 | 3, 6 | eqtrid 2776 | . 2 β’ (π΄ β π β ((IterCompβπΉ)β0) = ( I βΎ dom (π β π΄ β¦ π΅))) |
8 | dmmptg 6231 | . . . 4 β’ (βπ β π΄ π΅ β π β dom (π β π΄ β¦ π΅) = π΄) | |
9 | 8 | reseq2d 5971 | . . 3 β’ (βπ β π΄ π΅ β π β ( I βΎ dom (π β π΄ β¦ π΅)) = ( I βΎ π΄)) |
10 | mptresid 6040 | . . 3 β’ ( I βΎ π΄) = (π β π΄ β¦ π) | |
11 | 9, 10 | eqtrdi 2780 | . 2 β’ (βπ β π΄ π΅ β π β ( I βΎ dom (π β π΄ β¦ π΅)) = (π β π΄ β¦ π)) |
12 | 7, 11 | sylan9eq 2784 | 1 β’ ((π΄ β π β§ βπ β π΄ π΅ β π) β ((IterCompβπΉ)β0) = (π β π΄ β¦ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3053 Vcvv 3466 β¦ cmpt 5221 I cid 5563 dom cdm 5666 βΎ cres 5668 βcfv 6533 0cc0 11106 IterCompcitco 47531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-n0 12470 df-z 12556 df-uz 12820 df-seq 13964 df-itco 47533 |
This theorem is referenced by: itcovalpclem1 47544 itcovalt2lem1 47549 |
Copyright terms: Public domain | W3C validator |