MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvth Structured version   Visualization version   GIF version

Theorem mvth 25061
Description: The Mean Value Theorem. If 𝐹 is a real continuous function on [𝐴, 𝐵] which is differentiable on (𝐴, 𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that (ℝ D 𝐹)‘𝑥 is equal to the average slope over [𝐴, 𝐵]. This is Metamath 100 proof #75. (Contributed by Mario Carneiro, 1-Sep-2014.) (Proof shortened by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
mvth.a (𝜑𝐴 ∈ ℝ)
mvth.b (𝜑𝐵 ∈ ℝ)
mvth.lt (𝜑𝐴 < 𝐵)
mvth.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
mvth.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
Assertion
Ref Expression
mvth (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem mvth
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mvth.a . . 3 (𝜑𝐴 ∈ ℝ)
2 mvth.b . . 3 (𝜑𝐵 ∈ ℝ)
3 mvth.lt . . 3 (𝜑𝐴 < 𝐵)
4 mvth.f . . 3 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
5 mptresid 5947 . . . 4 ( I ↾ (𝐴[,]𝐵)) = (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)
6 iccssre 13090 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
71, 2, 6syl2anc 583 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8 ax-resscn 10859 . . . . 5 ℝ ⊆ ℂ
9 cncfmptid 23982 . . . . 5 (((𝐴[,]𝐵) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) ∈ ((𝐴[,]𝐵)–cn→ℝ))
107, 8, 9sylancl 585 . . . 4 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) ∈ ((𝐴[,]𝐵)–cn→ℝ))
115, 10eqeltrid 2843 . . 3 (𝜑 → ( I ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
12 mvth.d . . 3 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
135eqcomi 2747 . . . . . . 7 (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) = ( I ↾ (𝐴[,]𝐵))
1413oveq2i 7266 . . . . . 6 (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)) = (ℝ D ( I ↾ (𝐴[,]𝐵)))
15 reelprrecn 10894 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
1615a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
17 simpr 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1817recnd 10934 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
19 1red 10907 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → 1 ∈ ℝ)
2016dvmptid 25026 . . . . . . 7 (𝜑 → (ℝ D (𝑧 ∈ ℝ ↦ 𝑧)) = (𝑧 ∈ ℝ ↦ 1))
21 eqid 2738 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2221tgioo2 23872 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
23 iccntr 23890 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
241, 2, 23syl2anc 583 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2516, 18, 19, 20, 7, 22, 21, 24dvmptres2 25031 . . . . . 6 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1))
2614, 25eqtr3id 2793 . . . . 5 (𝜑 → (ℝ D ( I ↾ (𝐴[,]𝐵))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1))
2726dmeqd 5803 . . . 4 (𝜑 → dom (ℝ D ( I ↾ (𝐴[,]𝐵))) = dom (𝑧 ∈ (𝐴(,)𝐵) ↦ 1))
28 1ex 10902 . . . . 5 1 ∈ V
29 eqid 2738 . . . . 5 (𝑧 ∈ (𝐴(,)𝐵) ↦ 1) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1)
3028, 29dmmpti 6561 . . . 4 dom (𝑧 ∈ (𝐴(,)𝐵) ↦ 1) = (𝐴(,)𝐵)
3127, 30eqtrdi 2795 . . 3 (𝜑 → dom (ℝ D ( I ↾ (𝐴[,]𝐵))) = (𝐴(,)𝐵))
321, 2, 3, 4, 11, 12, 31cmvth 25060 . 2 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)))
331rexrd 10956 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
342rexrd 10956 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
351, 2, 3ltled 11053 . . . . . . . . . . 11 (𝜑𝐴𝐵)
36 ubicc2 13126 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
3733, 34, 35, 36syl3anc 1369 . . . . . . . . . 10 (𝜑𝐵 ∈ (𝐴[,]𝐵))
38 fvresi 7027 . . . . . . . . . 10 (𝐵 ∈ (𝐴[,]𝐵) → (( I ↾ (𝐴[,]𝐵))‘𝐵) = 𝐵)
3937, 38syl 17 . . . . . . . . 9 (𝜑 → (( I ↾ (𝐴[,]𝐵))‘𝐵) = 𝐵)
40 lbicc2 13125 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
4133, 34, 35, 40syl3anc 1369 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐴[,]𝐵))
42 fvresi 7027 . . . . . . . . . 10 (𝐴 ∈ (𝐴[,]𝐵) → (( I ↾ (𝐴[,]𝐵))‘𝐴) = 𝐴)
4341, 42syl 17 . . . . . . . . 9 (𝜑 → (( I ↾ (𝐴[,]𝐵))‘𝐴) = 𝐴)
4439, 43oveq12d 7273 . . . . . . . 8 (𝜑 → ((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) = (𝐵𝐴))
4544adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) = (𝐵𝐴))
4645oveq1d 7270 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = ((𝐵𝐴) · ((ℝ D 𝐹)‘𝑥)))
4726fveq1d 6758 . . . . . . . . 9 (𝜑 → ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ 1)‘𝑥))
48 eqidd 2739 . . . . . . . . . 10 (𝑧 = 𝑥 → 1 = 1)
4948, 29, 28fvmpt3i 6862 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ 1)‘𝑥) = 1)
5047, 49sylan9eq 2799 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥) = 1)
5150oveq2d 7271 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · 1))
52 cncff 23962 . . . . . . . . . . . . 13 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
534, 52syl 17 . . . . . . . . . . . 12 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
5453, 37ffvelrnd 6944 . . . . . . . . . . 11 (𝜑 → (𝐹𝐵) ∈ ℝ)
5553, 41ffvelrnd 6944 . . . . . . . . . . 11 (𝜑 → (𝐹𝐴) ∈ ℝ)
5654, 55resubcld 11333 . . . . . . . . . 10 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ)
5756recnd 10934 . . . . . . . . 9 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
5857adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
5958mulid1d 10923 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · 1) = ((𝐹𝐵) − (𝐹𝐴)))
6051, 59eqtrd 2778 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = ((𝐹𝐵) − (𝐹𝐴)))
6146, 60eqeq12d 2754 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) ↔ ((𝐵𝐴) · ((ℝ D 𝐹)‘𝑥)) = ((𝐹𝐵) − (𝐹𝐴))))
622, 1resubcld 11333 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
6362recnd 10934 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℂ)
6463adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐵𝐴) ∈ ℂ)
65 dvf 24976 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
6612feq2d 6570 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
6765, 66mpbii 232 . . . . . . 7 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
6867ffvelrnda 6943 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
691, 2posdifd 11492 . . . . . . . . 9 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
703, 69mpbid 231 . . . . . . . 8 (𝜑 → 0 < (𝐵𝐴))
7170gt0ne0d 11469 . . . . . . 7 (𝜑 → (𝐵𝐴) ≠ 0)
7271adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐵𝐴) ≠ 0)
7358, 64, 68, 72divmuld 11703 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) = ((ℝ D 𝐹)‘𝑥) ↔ ((𝐵𝐴) · ((ℝ D 𝐹)‘𝑥)) = ((𝐹𝐵) − (𝐹𝐴))))
7461, 73bitr4d 281 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) ↔ (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) = ((ℝ D 𝐹)‘𝑥)))
75 eqcom 2745 . . . 4 ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)))
76 eqcom 2745 . . . 4 (((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) ↔ (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) = ((ℝ D 𝐹)‘𝑥))
7774, 75, 763bitr4g 313 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴))))
7877rexbidva 3224 . 2 (𝜑 → (∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴))))
7932, 78mpbid 231 1 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  wss 3883  {cpr 4560   class class class wbr 5070  cmpt 5153   I cid 5479  dom cdm 5580  ran crn 5581  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  (,)cioo 13008  [,]cicc 13011  TopOpenctopn 17049  topGenctg 17065  fldccnfld 20510  intcnt 22076  cnccncf 23945   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  dvlip  25062  c1liplem1  25065  dvgt0lem1  25071  dvcvx  25089  dvbdfbdioolem1  43359
  Copyright terms: Public domain W3C validator