Step | Hyp | Ref
| Expression |
1 | | mvth.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | mvth.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
3 | | mvth.lt |
. . 3
⊢ (𝜑 → 𝐴 < 𝐵) |
4 | | mvth.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
5 | | mptresid 5947 |
. . . 4
⊢ ( I
↾ (𝐴[,]𝐵)) = (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) |
6 | | iccssre 13090 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
7 | 1, 2, 6 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
8 | | ax-resscn 10859 |
. . . . 5
⊢ ℝ
⊆ ℂ |
9 | | cncfmptid 23982 |
. . . . 5
⊢ (((𝐴[,]𝐵) ⊆ ℝ ∧ ℝ ⊆
ℂ) → (𝑧 ∈
(𝐴[,]𝐵) ↦ 𝑧) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
10 | 7, 8, 9 | sylancl 585 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
11 | 5, 10 | eqeltrid 2843 |
. . 3
⊢ (𝜑 → ( I ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
12 | | mvth.d |
. . 3
⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
13 | 5 | eqcomi 2747 |
. . . . . . 7
⊢ (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) = ( I ↾ (𝐴[,]𝐵)) |
14 | 13 | oveq2i 7266 |
. . . . . 6
⊢ (ℝ
D (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)) = (ℝ D ( I ↾ (𝐴[,]𝐵))) |
15 | | reelprrecn 10894 |
. . . . . . . 8
⊢ ℝ
∈ {ℝ, ℂ} |
16 | 15 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
17 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) |
18 | 17 | recnd 10934 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ) |
19 | | 1red 10907 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℝ) → 1 ∈
ℝ) |
20 | 16 | dvmptid 25026 |
. . . . . . 7
⊢ (𝜑 → (ℝ D (𝑧 ∈ ℝ ↦ 𝑧)) = (𝑧 ∈ ℝ ↦ 1)) |
21 | | eqid 2738 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
22 | 21 | tgioo2 23872 |
. . . . . . 7
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
23 | | iccntr 23890 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
24 | 1, 2, 23 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
25 | 16, 18, 19, 20, 7, 22, 21, 24 | dvmptres2 25031 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1)) |
26 | 14, 25 | eqtr3id 2793 |
. . . . 5
⊢ (𝜑 → (ℝ D ( I ↾
(𝐴[,]𝐵))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1)) |
27 | 26 | dmeqd 5803 |
. . . 4
⊢ (𝜑 → dom (ℝ D ( I ↾
(𝐴[,]𝐵))) = dom (𝑧 ∈ (𝐴(,)𝐵) ↦ 1)) |
28 | | 1ex 10902 |
. . . . 5
⊢ 1 ∈
V |
29 | | eqid 2738 |
. . . . 5
⊢ (𝑧 ∈ (𝐴(,)𝐵) ↦ 1) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1) |
30 | 28, 29 | dmmpti 6561 |
. . . 4
⊢ dom
(𝑧 ∈ (𝐴(,)𝐵) ↦ 1) = (𝐴(,)𝐵) |
31 | 27, 30 | eqtrdi 2795 |
. . 3
⊢ (𝜑 → dom (ℝ D ( I ↾
(𝐴[,]𝐵))) = (𝐴(,)𝐵)) |
32 | 1, 2, 3, 4, 11, 12, 31 | cmvth 25060 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥))) |
33 | 1 | rexrd 10956 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
34 | 2 | rexrd 10956 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
35 | 1, 2, 3 | ltled 11053 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
36 | | ubicc2 13126 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
37 | 33, 34, 35, 36 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
38 | | fvresi 7027 |
. . . . . . . . . 10
⊢ (𝐵 ∈ (𝐴[,]𝐵) → (( I ↾ (𝐴[,]𝐵))‘𝐵) = 𝐵) |
39 | 37, 38 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (( I ↾ (𝐴[,]𝐵))‘𝐵) = 𝐵) |
40 | | lbicc2 13125 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
41 | 33, 34, 35, 40 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
42 | | fvresi 7027 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝐴[,]𝐵) → (( I ↾ (𝐴[,]𝐵))‘𝐴) = 𝐴) |
43 | 41, 42 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (( I ↾ (𝐴[,]𝐵))‘𝐴) = 𝐴) |
44 | 39, 43 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝜑 → ((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) = (𝐵 − 𝐴)) |
45 | 44 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) = (𝐵 − 𝐴)) |
46 | 45 | oveq1d 7270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = ((𝐵 − 𝐴) · ((ℝ D 𝐹)‘𝑥))) |
47 | 26 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝜑 → ((ℝ D ( I ↾
(𝐴[,]𝐵)))‘𝑥) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ 1)‘𝑥)) |
48 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → 1 = 1) |
49 | 48, 29, 28 | fvmpt3i 6862 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ 1)‘𝑥) = 1) |
50 | 47, 49 | sylan9eq 2799 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥) = 1) |
51 | 50 | oveq2d 7271 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((𝐹‘𝐵) − (𝐹‘𝐴)) · 1)) |
52 | | cncff 23962 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
53 | 4, 52 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
54 | 53, 37 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝐵) ∈ ℝ) |
55 | 53, 41 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘𝐴) ∈ ℝ) |
56 | 54, 55 | resubcld 11333 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐹‘𝐵) − (𝐹‘𝐴)) ∈ ℝ) |
57 | 56 | recnd 10934 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘𝐵) − (𝐹‘𝐴)) ∈ ℂ) |
58 | 57 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹‘𝐵) − (𝐹‘𝐴)) ∈ ℂ) |
59 | 58 | mulid1d 10923 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹‘𝐵) − (𝐹‘𝐴)) · 1) = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
60 | 51, 59 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = ((𝐹‘𝐵) − (𝐹‘𝐴))) |
61 | 46, 60 | eqeq12d 2754 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) ↔ ((𝐵 − 𝐴) · ((ℝ D 𝐹)‘𝑥)) = ((𝐹‘𝐵) − (𝐹‘𝐴)))) |
62 | 2, 1 | resubcld 11333 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
63 | 62 | recnd 10934 |
. . . . . . 7
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℂ) |
64 | 63 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐵 − 𝐴) ∈ ℂ) |
65 | | dvf 24976 |
. . . . . . . 8
⊢ (ℝ
D 𝐹):dom (ℝ D 𝐹)⟶ℂ |
66 | 12 | feq2d 6570 |
. . . . . . . 8
⊢ (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ
D 𝐹):(𝐴(,)𝐵)⟶ℂ)) |
67 | 65, 66 | mpbii 232 |
. . . . . . 7
⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ) |
68 | 67 | ffvelrnda 6943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
69 | 1, 2 | posdifd 11492 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
70 | 3, 69 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
71 | 70 | gt0ne0d 11469 |
. . . . . . 7
⊢ (𝜑 → (𝐵 − 𝐴) ≠ 0) |
72 | 71 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐵 − 𝐴) ≠ 0) |
73 | 58, 64, 68, 72 | divmuld 11703 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((((𝐹‘𝐵) − (𝐹‘𝐴)) / (𝐵 − 𝐴)) = ((ℝ D 𝐹)‘𝑥) ↔ ((𝐵 − 𝐴) · ((ℝ D 𝐹)‘𝑥)) = ((𝐹‘𝐵) − (𝐹‘𝐴)))) |
74 | 61, 73 | bitr4d 281 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) ↔ (((𝐹‘𝐵) − (𝐹‘𝐴)) / (𝐵 − 𝐴)) = ((ℝ D 𝐹)‘𝑥))) |
75 | | eqcom 2745 |
. . . 4
⊢ ((((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥))) |
76 | | eqcom 2745 |
. . . 4
⊢
(((ℝ D 𝐹)‘𝑥) = (((𝐹‘𝐵) − (𝐹‘𝐴)) / (𝐵 − 𝐴)) ↔ (((𝐹‘𝐵) − (𝐹‘𝐴)) / (𝐵 − 𝐴)) = ((ℝ D 𝐹)‘𝑥)) |
77 | 74, 75, 76 | 3bitr4g 313 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ ((ℝ D 𝐹)‘𝑥) = (((𝐹‘𝐵) − (𝐹‘𝐴)) / (𝐵 − 𝐴)))) |
78 | 77 | rexbidva 3224 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹‘𝐵) − (𝐹‘𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹‘𝐵) − (𝐹‘𝐴)) / (𝐵 − 𝐴)))) |
79 | 32, 78 | mpbid 231 |
1
⊢ (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹‘𝐵) − (𝐹‘𝐴)) / (𝐵 − 𝐴))) |