MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvth Structured version   Visualization version   GIF version

Theorem mvth 25745
Description: The Mean Value Theorem. If 𝐹 is a real continuous function on [𝐴, 𝐵] which is differentiable on (𝐴, 𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that (ℝ D 𝐹)‘𝑥 is equal to the average slope over [𝐴, 𝐵]. This is Metamath 100 proof #75. (Contributed by Mario Carneiro, 1-Sep-2014.) (Proof shortened by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
mvth.a (𝜑𝐴 ∈ ℝ)
mvth.b (𝜑𝐵 ∈ ℝ)
mvth.lt (𝜑𝐴 < 𝐵)
mvth.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
mvth.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
Assertion
Ref Expression
mvth (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem mvth
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mvth.a . . 3 (𝜑𝐴 ∈ ℝ)
2 mvth.b . . 3 (𝜑𝐵 ∈ ℝ)
3 mvth.lt . . 3 (𝜑𝐴 < 𝐵)
4 mvth.f . . 3 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
5 mptresid 6050 . . . 4 ( I ↾ (𝐴[,]𝐵)) = (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)
6 iccssre 13411 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
71, 2, 6syl2anc 583 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8 ax-resscn 11171 . . . . 5 ℝ ⊆ ℂ
9 cncfmptid 24654 . . . . 5 (((𝐴[,]𝐵) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) ∈ ((𝐴[,]𝐵)–cn→ℝ))
107, 8, 9sylancl 585 . . . 4 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) ∈ ((𝐴[,]𝐵)–cn→ℝ))
115, 10eqeltrid 2836 . . 3 (𝜑 → ( I ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
12 mvth.d . . 3 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
135eqcomi 2740 . . . . . . 7 (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) = ( I ↾ (𝐴[,]𝐵))
1413oveq2i 7423 . . . . . 6 (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)) = (ℝ D ( I ↾ (𝐴[,]𝐵)))
15 reelprrecn 11206 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
1615a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
17 simpr 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1817recnd 11247 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
19 1red 11220 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → 1 ∈ ℝ)
2016dvmptid 25710 . . . . . . 7 (𝜑 → (ℝ D (𝑧 ∈ ℝ ↦ 𝑧)) = (𝑧 ∈ ℝ ↦ 1))
21 eqid 2731 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2221tgioo2 24540 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
23 iccntr 24558 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
241, 2, 23syl2anc 583 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2516, 18, 19, 20, 7, 22, 21, 24dvmptres2 25715 . . . . . 6 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1))
2614, 25eqtr3id 2785 . . . . 5 (𝜑 → (ℝ D ( I ↾ (𝐴[,]𝐵))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1))
2726dmeqd 5905 . . . 4 (𝜑 → dom (ℝ D ( I ↾ (𝐴[,]𝐵))) = dom (𝑧 ∈ (𝐴(,)𝐵) ↦ 1))
28 1ex 11215 . . . . 5 1 ∈ V
29 eqid 2731 . . . . 5 (𝑧 ∈ (𝐴(,)𝐵) ↦ 1) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1)
3028, 29dmmpti 6694 . . . 4 dom (𝑧 ∈ (𝐴(,)𝐵) ↦ 1) = (𝐴(,)𝐵)
3127, 30eqtrdi 2787 . . 3 (𝜑 → dom (ℝ D ( I ↾ (𝐴[,]𝐵))) = (𝐴(,)𝐵))
321, 2, 3, 4, 11, 12, 31cmvth 25744 . 2 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)))
331rexrd 11269 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
342rexrd 11269 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
351, 2, 3ltled 11367 . . . . . . . . . . 11 (𝜑𝐴𝐵)
36 ubicc2 13447 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
3733, 34, 35, 36syl3anc 1370 . . . . . . . . . 10 (𝜑𝐵 ∈ (𝐴[,]𝐵))
38 fvresi 7173 . . . . . . . . . 10 (𝐵 ∈ (𝐴[,]𝐵) → (( I ↾ (𝐴[,]𝐵))‘𝐵) = 𝐵)
3937, 38syl 17 . . . . . . . . 9 (𝜑 → (( I ↾ (𝐴[,]𝐵))‘𝐵) = 𝐵)
40 lbicc2 13446 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
4133, 34, 35, 40syl3anc 1370 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐴[,]𝐵))
42 fvresi 7173 . . . . . . . . . 10 (𝐴 ∈ (𝐴[,]𝐵) → (( I ↾ (𝐴[,]𝐵))‘𝐴) = 𝐴)
4341, 42syl 17 . . . . . . . . 9 (𝜑 → (( I ↾ (𝐴[,]𝐵))‘𝐴) = 𝐴)
4439, 43oveq12d 7430 . . . . . . . 8 (𝜑 → ((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) = (𝐵𝐴))
4544adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) = (𝐵𝐴))
4645oveq1d 7427 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = ((𝐵𝐴) · ((ℝ D 𝐹)‘𝑥)))
4726fveq1d 6893 . . . . . . . . 9 (𝜑 → ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ 1)‘𝑥))
48 eqidd 2732 . . . . . . . . . 10 (𝑧 = 𝑥 → 1 = 1)
4948, 29, 28fvmpt3i 7003 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ 1)‘𝑥) = 1)
5047, 49sylan9eq 2791 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥) = 1)
5150oveq2d 7428 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · 1))
52 cncff 24634 . . . . . . . . . . . . 13 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
534, 52syl 17 . . . . . . . . . . . 12 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
5453, 37ffvelcdmd 7087 . . . . . . . . . . 11 (𝜑 → (𝐹𝐵) ∈ ℝ)
5553, 41ffvelcdmd 7087 . . . . . . . . . . 11 (𝜑 → (𝐹𝐴) ∈ ℝ)
5654, 55resubcld 11647 . . . . . . . . . 10 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ)
5756recnd 11247 . . . . . . . . 9 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
5857adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
5958mulridd 11236 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · 1) = ((𝐹𝐵) − (𝐹𝐴)))
6051, 59eqtrd 2771 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = ((𝐹𝐵) − (𝐹𝐴)))
6146, 60eqeq12d 2747 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) ↔ ((𝐵𝐴) · ((ℝ D 𝐹)‘𝑥)) = ((𝐹𝐵) − (𝐹𝐴))))
622, 1resubcld 11647 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
6362recnd 11247 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℂ)
6463adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐵𝐴) ∈ ℂ)
65 dvf 25657 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
6612feq2d 6703 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
6765, 66mpbii 232 . . . . . . 7 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
6867ffvelcdmda 7086 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
691, 2posdifd 11806 . . . . . . . . 9 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
703, 69mpbid 231 . . . . . . . 8 (𝜑 → 0 < (𝐵𝐴))
7170gt0ne0d 11783 . . . . . . 7 (𝜑 → (𝐵𝐴) ≠ 0)
7271adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐵𝐴) ≠ 0)
7358, 64, 68, 72divmuld 12017 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) = ((ℝ D 𝐹)‘𝑥) ↔ ((𝐵𝐴) · ((ℝ D 𝐹)‘𝑥)) = ((𝐹𝐵) − (𝐹𝐴))))
7461, 73bitr4d 282 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) ↔ (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) = ((ℝ D 𝐹)‘𝑥)))
75 eqcom 2738 . . . 4 ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)))
76 eqcom 2738 . . . 4 (((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) ↔ (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) = ((ℝ D 𝐹)‘𝑥))
7774, 75, 763bitr4g 314 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴))))
7877rexbidva 3175 . 2 (𝜑 → (∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴))))
7932, 78mpbid 231 1 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wne 2939  wrex 3069  wss 3948  {cpr 4630   class class class wbr 5148  cmpt 5231   I cid 5573  dom cdm 5676  ran crn 5677  cres 5678  wf 6539  cfv 6543  (class class class)co 7412  cc 11112  cr 11113  0cc0 11114  1c1 11115   · cmul 11119  *cxr 11252   < clt 11253  cle 11254  cmin 11449   / cdiv 11876  (,)cioo 13329  [,]cicc 13332  TopOpenctopn 17372  topGenctg 17388  fldccnfld 21145  intcnt 22742  cnccncf 24617   D cdv 25613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192  ax-addf 11193  ax-mulf 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8151  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-er 8707  df-map 8826  df-pm 8827  df-ixp 8896  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fsupp 9366  df-fi 9410  df-sup 9441  df-inf 9442  df-oi 9509  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ioo 13333  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-topgen 17394  df-pt 17395  df-prds 17398  df-xrs 17453  df-qtop 17458  df-imas 17459  df-xps 17461  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-submnd 18707  df-mulg 18988  df-cntz 19223  df-cmn 19692  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-fbas 21142  df-fg 21143  df-cnfld 21146  df-top 22617  df-topon 22634  df-topsp 22656  df-bases 22670  df-cld 22744  df-ntr 22745  df-cls 22746  df-nei 22823  df-lp 22861  df-perf 22862  df-cn 22952  df-cnp 22953  df-haus 23040  df-cmp 23112  df-tx 23287  df-hmeo 23480  df-fil 23571  df-fm 23663  df-flim 23664  df-flf 23665  df-xms 24047  df-ms 24048  df-tms 24049  df-cncf 24619  df-limc 25616  df-dv 25617
This theorem is referenced by:  dvlip  25746  c1liplem1  25749  dvgt0lem1  25755  dvcvx  25773  dvbdfbdioolem1  44943
  Copyright terms: Public domain W3C validator