MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvth Structured version   Visualization version   GIF version

Theorem mvth 25897
Description: The Mean Value Theorem. If 𝐹 is a real continuous function on [𝐴, 𝐵] which is differentiable on (𝐴, 𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that (ℝ D 𝐹)‘𝑥 is equal to the average slope over [𝐴, 𝐵]. This is Metamath 100 proof #75. (Contributed by Mario Carneiro, 1-Sep-2014.) (Proof shortened by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
mvth.a (𝜑𝐴 ∈ ℝ)
mvth.b (𝜑𝐵 ∈ ℝ)
mvth.lt (𝜑𝐴 < 𝐵)
mvth.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
mvth.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
Assertion
Ref Expression
mvth (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem mvth
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mvth.a . . 3 (𝜑𝐴 ∈ ℝ)
2 mvth.b . . 3 (𝜑𝐵 ∈ ℝ)
3 mvth.lt . . 3 (𝜑𝐴 < 𝐵)
4 mvth.f . . 3 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
5 mptresid 6022 . . . 4 ( I ↾ (𝐴[,]𝐵)) = (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)
6 iccssre 13390 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
71, 2, 6syl2anc 584 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8 ax-resscn 11125 . . . . 5 ℝ ⊆ ℂ
9 cncfmptid 24806 . . . . 5 (((𝐴[,]𝐵) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) ∈ ((𝐴[,]𝐵)–cn→ℝ))
107, 8, 9sylancl 586 . . . 4 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) ∈ ((𝐴[,]𝐵)–cn→ℝ))
115, 10eqeltrid 2832 . . 3 (𝜑 → ( I ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
12 mvth.d . . 3 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
135eqcomi 2738 . . . . . . 7 (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) = ( I ↾ (𝐴[,]𝐵))
1413oveq2i 7398 . . . . . 6 (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)) = (ℝ D ( I ↾ (𝐴[,]𝐵)))
15 reelprrecn 11160 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
1615a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
17 simpr 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1817recnd 11202 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
19 1red 11175 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → 1 ∈ ℝ)
2016dvmptid 25861 . . . . . . 7 (𝜑 → (ℝ D (𝑧 ∈ ℝ ↦ 𝑧)) = (𝑧 ∈ ℝ ↦ 1))
21 tgioo4 24693 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
22 eqid 2729 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
23 iccntr 24710 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
241, 2, 23syl2anc 584 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2516, 18, 19, 20, 7, 21, 22, 24dvmptres2 25866 . . . . . 6 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1))
2614, 25eqtr3id 2778 . . . . 5 (𝜑 → (ℝ D ( I ↾ (𝐴[,]𝐵))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1))
2726dmeqd 5869 . . . 4 (𝜑 → dom (ℝ D ( I ↾ (𝐴[,]𝐵))) = dom (𝑧 ∈ (𝐴(,)𝐵) ↦ 1))
28 1ex 11170 . . . . 5 1 ∈ V
29 eqid 2729 . . . . 5 (𝑧 ∈ (𝐴(,)𝐵) ↦ 1) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1)
3028, 29dmmpti 6662 . . . 4 dom (𝑧 ∈ (𝐴(,)𝐵) ↦ 1) = (𝐴(,)𝐵)
3127, 30eqtrdi 2780 . . 3 (𝜑 → dom (ℝ D ( I ↾ (𝐴[,]𝐵))) = (𝐴(,)𝐵))
321, 2, 3, 4, 11, 12, 31cmvth 25895 . 2 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)))
331rexrd 11224 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
342rexrd 11224 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
351, 2, 3ltled 11322 . . . . . . . . . . 11 (𝜑𝐴𝐵)
36 ubicc2 13426 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
3733, 34, 35, 36syl3anc 1373 . . . . . . . . . 10 (𝜑𝐵 ∈ (𝐴[,]𝐵))
38 fvresi 7147 . . . . . . . . . 10 (𝐵 ∈ (𝐴[,]𝐵) → (( I ↾ (𝐴[,]𝐵))‘𝐵) = 𝐵)
3937, 38syl 17 . . . . . . . . 9 (𝜑 → (( I ↾ (𝐴[,]𝐵))‘𝐵) = 𝐵)
40 lbicc2 13425 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
4133, 34, 35, 40syl3anc 1373 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐴[,]𝐵))
42 fvresi 7147 . . . . . . . . . 10 (𝐴 ∈ (𝐴[,]𝐵) → (( I ↾ (𝐴[,]𝐵))‘𝐴) = 𝐴)
4341, 42syl 17 . . . . . . . . 9 (𝜑 → (( I ↾ (𝐴[,]𝐵))‘𝐴) = 𝐴)
4439, 43oveq12d 7405 . . . . . . . 8 (𝜑 → ((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) = (𝐵𝐴))
4544adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) = (𝐵𝐴))
4645oveq1d 7402 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = ((𝐵𝐴) · ((ℝ D 𝐹)‘𝑥)))
4726fveq1d 6860 . . . . . . . . 9 (𝜑 → ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ 1)‘𝑥))
48 eqidd 2730 . . . . . . . . . 10 (𝑧 = 𝑥 → 1 = 1)
4948, 29, 28fvmpt3i 6973 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ 1)‘𝑥) = 1)
5047, 49sylan9eq 2784 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥) = 1)
5150oveq2d 7403 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · 1))
52 cncff 24786 . . . . . . . . . . . . 13 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
534, 52syl 17 . . . . . . . . . . . 12 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
5453, 37ffvelcdmd 7057 . . . . . . . . . . 11 (𝜑 → (𝐹𝐵) ∈ ℝ)
5553, 41ffvelcdmd 7057 . . . . . . . . . . 11 (𝜑 → (𝐹𝐴) ∈ ℝ)
5654, 55resubcld 11606 . . . . . . . . . 10 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ)
5756recnd 11202 . . . . . . . . 9 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
5857adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
5958mulridd 11191 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · 1) = ((𝐹𝐵) − (𝐹𝐴)))
6051, 59eqtrd 2764 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = ((𝐹𝐵) − (𝐹𝐴)))
6146, 60eqeq12d 2745 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) ↔ ((𝐵𝐴) · ((ℝ D 𝐹)‘𝑥)) = ((𝐹𝐵) − (𝐹𝐴))))
622, 1resubcld 11606 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
6362recnd 11202 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℂ)
6463adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐵𝐴) ∈ ℂ)
65 dvf 25808 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
6612feq2d 6672 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
6765, 66mpbii 233 . . . . . . 7 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
6867ffvelcdmda 7056 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
691, 2posdifd 11765 . . . . . . . . 9 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
703, 69mpbid 232 . . . . . . . 8 (𝜑 → 0 < (𝐵𝐴))
7170gt0ne0d 11742 . . . . . . 7 (𝜑 → (𝐵𝐴) ≠ 0)
7271adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐵𝐴) ≠ 0)
7358, 64, 68, 72divmuld 11980 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) = ((ℝ D 𝐹)‘𝑥) ↔ ((𝐵𝐴) · ((ℝ D 𝐹)‘𝑥)) = ((𝐹𝐵) − (𝐹𝐴))))
7461, 73bitr4d 282 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) ↔ (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) = ((ℝ D 𝐹)‘𝑥)))
75 eqcom 2736 . . . 4 ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)))
76 eqcom 2736 . . . 4 (((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) ↔ (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) = ((ℝ D 𝐹)‘𝑥))
7774, 75, 763bitr4g 314 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴))))
7877rexbidva 3155 . 2 (𝜑 → (∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴))))
7932, 78mpbid 232 1 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  wss 3914  {cpr 4591   class class class wbr 5107  cmpt 5188   I cid 5532  dom cdm 5638  ran crn 5639  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  (,)cioo 13306  [,]cicc 13309  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264  intcnt 22904  cnccncf 24769   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  dvlip  25898  c1liplem1  25901  dvgt0lem1  25907  dvcvx  25925  dvbdfbdioolem1  45926
  Copyright terms: Public domain W3C validator