MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvth Structured version   Visualization version   GIF version

Theorem mvth 26031
Description: The Mean Value Theorem. If 𝐹 is a real continuous function on [𝐴, 𝐵] which is differentiable on (𝐴, 𝐵), then there is some 𝑥 ∈ (𝐴, 𝐵) such that (ℝ D 𝐹)‘𝑥 is equal to the average slope over [𝐴, 𝐵]. This is Metamath 100 proof #75. (Contributed by Mario Carneiro, 1-Sep-2014.) (Proof shortened by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
mvth.a (𝜑𝐴 ∈ ℝ)
mvth.b (𝜑𝐵 ∈ ℝ)
mvth.lt (𝜑𝐴 < 𝐵)
mvth.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
mvth.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
Assertion
Ref Expression
mvth (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝜑,𝑥

Proof of Theorem mvth
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mvth.a . . 3 (𝜑𝐴 ∈ ℝ)
2 mvth.b . . 3 (𝜑𝐵 ∈ ℝ)
3 mvth.lt . . 3 (𝜑𝐴 < 𝐵)
4 mvth.f . . 3 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
5 mptresid 6069 . . . 4 ( I ↾ (𝐴[,]𝐵)) = (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)
6 iccssre 13469 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
71, 2, 6syl2anc 584 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8 ax-resscn 11212 . . . . 5 ℝ ⊆ ℂ
9 cncfmptid 24939 . . . . 5 (((𝐴[,]𝐵) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) ∈ ((𝐴[,]𝐵)–cn→ℝ))
107, 8, 9sylancl 586 . . . 4 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) ∈ ((𝐴[,]𝐵)–cn→ℝ))
115, 10eqeltrid 2845 . . 3 (𝜑 → ( I ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℝ))
12 mvth.d . . 3 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
135eqcomi 2746 . . . . . . 7 (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧) = ( I ↾ (𝐴[,]𝐵))
1413oveq2i 7442 . . . . . 6 (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)) = (ℝ D ( I ↾ (𝐴[,]𝐵)))
15 reelprrecn 11247 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
1615a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
17 simpr 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1817recnd 11289 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
19 1red 11262 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → 1 ∈ ℝ)
2016dvmptid 25995 . . . . . . 7 (𝜑 → (ℝ D (𝑧 ∈ ℝ ↦ 𝑧)) = (𝑧 ∈ ℝ ↦ 1))
21 tgioo4 24826 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
22 eqid 2737 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
23 iccntr 24843 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
241, 2, 23syl2anc 584 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2516, 18, 19, 20, 7, 21, 22, 24dvmptres2 26000 . . . . . 6 (𝜑 → (ℝ D (𝑧 ∈ (𝐴[,]𝐵) ↦ 𝑧)) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1))
2614, 25eqtr3id 2791 . . . . 5 (𝜑 → (ℝ D ( I ↾ (𝐴[,]𝐵))) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1))
2726dmeqd 5916 . . . 4 (𝜑 → dom (ℝ D ( I ↾ (𝐴[,]𝐵))) = dom (𝑧 ∈ (𝐴(,)𝐵) ↦ 1))
28 1ex 11257 . . . . 5 1 ∈ V
29 eqid 2737 . . . . 5 (𝑧 ∈ (𝐴(,)𝐵) ↦ 1) = (𝑧 ∈ (𝐴(,)𝐵) ↦ 1)
3028, 29dmmpti 6712 . . . 4 dom (𝑧 ∈ (𝐴(,)𝐵) ↦ 1) = (𝐴(,)𝐵)
3127, 30eqtrdi 2793 . . 3 (𝜑 → dom (ℝ D ( I ↾ (𝐴[,]𝐵))) = (𝐴(,)𝐵))
321, 2, 3, 4, 11, 12, 31cmvth 26029 . 2 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)))
331rexrd 11311 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
342rexrd 11311 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
351, 2, 3ltled 11409 . . . . . . . . . . 11 (𝜑𝐴𝐵)
36 ubicc2 13505 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
3733, 34, 35, 36syl3anc 1373 . . . . . . . . . 10 (𝜑𝐵 ∈ (𝐴[,]𝐵))
38 fvresi 7193 . . . . . . . . . 10 (𝐵 ∈ (𝐴[,]𝐵) → (( I ↾ (𝐴[,]𝐵))‘𝐵) = 𝐵)
3937, 38syl 17 . . . . . . . . 9 (𝜑 → (( I ↾ (𝐴[,]𝐵))‘𝐵) = 𝐵)
40 lbicc2 13504 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
4133, 34, 35, 40syl3anc 1373 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐴[,]𝐵))
42 fvresi 7193 . . . . . . . . . 10 (𝐴 ∈ (𝐴[,]𝐵) → (( I ↾ (𝐴[,]𝐵))‘𝐴) = 𝐴)
4341, 42syl 17 . . . . . . . . 9 (𝜑 → (( I ↾ (𝐴[,]𝐵))‘𝐴) = 𝐴)
4439, 43oveq12d 7449 . . . . . . . 8 (𝜑 → ((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) = (𝐵𝐴))
4544adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) = (𝐵𝐴))
4645oveq1d 7446 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = ((𝐵𝐴) · ((ℝ D 𝐹)‘𝑥)))
4726fveq1d 6908 . . . . . . . . 9 (𝜑 → ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥) = ((𝑧 ∈ (𝐴(,)𝐵) ↦ 1)‘𝑥))
48 eqidd 2738 . . . . . . . . . 10 (𝑧 = 𝑥 → 1 = 1)
4948, 29, 28fvmpt3i 7021 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → ((𝑧 ∈ (𝐴(,)𝐵) ↦ 1)‘𝑥) = 1)
5047, 49sylan9eq 2797 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥) = 1)
5150oveq2d 7447 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · 1))
52 cncff 24919 . . . . . . . . . . . . 13 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
534, 52syl 17 . . . . . . . . . . . 12 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
5453, 37ffvelcdmd 7105 . . . . . . . . . . 11 (𝜑 → (𝐹𝐵) ∈ ℝ)
5553, 41ffvelcdmd 7105 . . . . . . . . . . 11 (𝜑 → (𝐹𝐴) ∈ ℝ)
5654, 55resubcld 11691 . . . . . . . . . 10 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℝ)
5756recnd 11289 . . . . . . . . 9 (𝜑 → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
5857adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝐹𝐵) − (𝐹𝐴)) ∈ ℂ)
5958mulridd 11278 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · 1) = ((𝐹𝐵) − (𝐹𝐴)))
6051, 59eqtrd 2777 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = ((𝐹𝐵) − (𝐹𝐴)))
6146, 60eqeq12d 2753 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) ↔ ((𝐵𝐴) · ((ℝ D 𝐹)‘𝑥)) = ((𝐹𝐵) − (𝐹𝐴))))
622, 1resubcld 11691 . . . . . . . 8 (𝜑 → (𝐵𝐴) ∈ ℝ)
6362recnd 11289 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℂ)
6463adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐵𝐴) ∈ ℂ)
65 dvf 25942 . . . . . . . 8 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
6612feq2d 6722 . . . . . . . 8 (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ))
6765, 66mpbii 233 . . . . . . 7 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ)
6867ffvelcdmda 7104 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
691, 2posdifd 11850 . . . . . . . . 9 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
703, 69mpbid 232 . . . . . . . 8 (𝜑 → 0 < (𝐵𝐴))
7170gt0ne0d 11827 . . . . . . 7 (𝜑 → (𝐵𝐴) ≠ 0)
7271adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐵𝐴) ≠ 0)
7358, 64, 68, 72divmuld 12065 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) = ((ℝ D 𝐹)‘𝑥) ↔ ((𝐵𝐴) · ((ℝ D 𝐹)‘𝑥)) = ((𝐹𝐵) − (𝐹𝐴))))
7461, 73bitr4d 282 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) ↔ (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) = ((ℝ D 𝐹)‘𝑥)))
75 eqcom 2744 . . . 4 ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) = (((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)))
76 eqcom 2744 . . . 4 (((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) ↔ (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)) = ((ℝ D 𝐹)‘𝑥))
7774, 75, 763bitr4g 314 . . 3 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ ((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴))))
7877rexbidva 3177 . 2 (𝜑 → (∃𝑥 ∈ (𝐴(,)𝐵)(((𝐹𝐵) − (𝐹𝐴)) · ((ℝ D ( I ↾ (𝐴[,]𝐵)))‘𝑥)) = (((( I ↾ (𝐴[,]𝐵))‘𝐵) − (( I ↾ (𝐴[,]𝐵))‘𝐴)) · ((ℝ D 𝐹)‘𝑥)) ↔ ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴))))
7932, 78mpbid 232 1 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = (((𝐹𝐵) − (𝐹𝐴)) / (𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  wss 3951  {cpr 4628   class class class wbr 5143  cmpt 5225   I cid 5577  dom cdm 5685  ran crn 5686  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160  *cxr 11294   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  (,)cioo 13387  [,]cicc 13390  TopOpenctopn 17466  topGenctg 17482  fldccnfld 21364  intcnt 23025  cnccncf 24902   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  dvlip  26032  c1liplem1  26035  dvgt0lem1  26041  dvcvx  26059  dvbdfbdioolem1  45943
  Copyright terms: Public domain W3C validator