Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmptid | Structured version Visualization version GIF version |
Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
Ref | Expression |
---|---|
cnmptid | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptresid 5984 | . 2 ⊢ ( I ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥) | |
2 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | idcn 22506 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
5 | 1, 4 | eqeltrrid 2842 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ↦ cmpt 5172 I cid 5511 ↾ cres 5616 ‘cfv 6473 (class class class)co 7329 TopOnctopon 22157 Cn ccn 22473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-map 8680 df-top 22141 df-topon 22158 df-cn 22476 |
This theorem is referenced by: xkoinjcn 22936 txconn 22938 imasnopn 22939 imasncld 22940 imasncls 22941 pt1hmeo 23055 istgp2 23340 tmdmulg 23341 tmdlactcn 23351 clsnsg 23359 tgpt0 23368 tlmtgp 23445 nmcn 24105 expcn 24133 divccn 24134 cncfmptid 24174 cdivcncf 24182 iirevcn 24191 iihalf1cn 24193 iihalf2cn 24195 icchmeo 24202 evth2 24221 pcocn 24278 pcopt 24283 pcopt2 24284 pcoass 24285 csscld 24511 clsocv 24512 dvcnvlem 25238 resqrtcn 26000 sqrtcn 26001 efrlim 26217 ipasslem7 29427 occllem 29894 hmopidmchi 30742 rmulccn 32117 cxpcncf1 32816 cvxpconn 33444 cvmlift2lem2 33506 cvmlift2lem3 33507 cvmliftphtlem 33519 knoppcnlem10 34773 cxpcncf2 43765 |
Copyright terms: Public domain | W3C validator |