| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmptid | Structured version Visualization version GIF version | ||
| Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| Ref | Expression |
|---|---|
| cnmptid | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptresid 6038 | . 2 ⊢ ( I ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥) | |
| 2 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | idcn 23195 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
| 5 | 1, 4 | eqeltrrid 2839 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ↦ cmpt 5201 I cid 5547 ↾ cres 5656 ‘cfv 6531 (class class class)co 7405 TopOnctopon 22848 Cn ccn 23162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-top 22832 df-topon 22849 df-cn 23165 |
| This theorem is referenced by: xkoinjcn 23625 txconn 23627 imasnopn 23628 imasncld 23629 imasncls 23630 pt1hmeo 23744 istgp2 24029 tmdmulg 24030 tmdlactcn 24040 clsnsg 24048 tgpt0 24057 tlmtgp 24134 nmcn 24784 expcn 24814 divccn 24815 expcnOLD 24816 divccnOLD 24817 cncfmptid 24857 cdivcncf 24865 iirevcn 24875 iihalf1cn 24877 iihalf1cnOLD 24878 iihalf2cn 24880 iihalf2cnOLD 24881 icchmeo 24889 icchmeoOLD 24890 evth2 24910 pcocn 24968 pcopt 24973 pcopt2 24974 pcoass 24975 csscld 25201 clsocv 25202 dvcnvlem 25932 resqrtcn 26711 sqrtcn 26712 efrlim 26931 efrlimOLD 26932 ipasslem7 30817 occllem 31284 hmopidmchi 32132 rmulccn 33959 cxpcncf1 34627 cvxpconn 35264 cvmlift2lem2 35326 cvmlift2lem3 35327 cvmliftphtlem 35339 knoppcnlem10 36520 cxpcncf2 45928 |
| Copyright terms: Public domain | W3C validator |