Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnmptid | Structured version Visualization version GIF version |
Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
Ref | Expression |
---|---|
cnmptid | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptresid 5947 | . 2 ⊢ ( I ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥) | |
2 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | idcn 22316 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
5 | 1, 4 | eqeltrrid 2844 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ↦ cmpt 5153 I cid 5479 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 TopOnctopon 21967 Cn ccn 22283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-top 21951 df-topon 21968 df-cn 22286 |
This theorem is referenced by: xkoinjcn 22746 txconn 22748 imasnopn 22749 imasncld 22750 imasncls 22751 pt1hmeo 22865 istgp2 23150 tmdmulg 23151 tmdlactcn 23161 clsnsg 23169 tgpt0 23178 tlmtgp 23255 nmcn 23913 expcn 23941 divccn 23942 cncfmptid 23982 cdivcncf 23990 iirevcn 23999 iihalf1cn 24001 iihalf2cn 24003 icchmeo 24010 evth2 24029 pcocn 24086 pcopt 24091 pcopt2 24092 pcoass 24093 csscld 24318 clsocv 24319 dvcnvlem 25045 resqrtcn 25807 sqrtcn 25808 efrlim 26024 ipasslem7 29099 occllem 29566 hmopidmchi 30414 rmulccn 31780 cxpcncf1 32475 cvxpconn 33104 cvmlift2lem2 33166 cvmlift2lem3 33167 cvmliftphtlem 33179 knoppcnlem10 34609 cxpcncf2 43330 |
Copyright terms: Public domain | W3C validator |