![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmptid | Structured version Visualization version GIF version |
Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | β’ (π β π½ β (TopOnβπ)) |
Ref | Expression |
---|---|
cnmptid | β’ (π β (π₯ β π β¦ π₯) β (π½ Cn π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptresid 6050 | . 2 β’ ( I βΎ π) = (π₯ β π β¦ π₯) | |
2 | cnmptid.j | . . 3 β’ (π β π½ β (TopOnβπ)) | |
3 | idcn 22981 | . . 3 β’ (π½ β (TopOnβπ) β ( I βΎ π) β (π½ Cn π½)) | |
4 | 2, 3 | syl 17 | . 2 β’ (π β ( I βΎ π) β (π½ Cn π½)) |
5 | 1, 4 | eqeltrrid 2838 | 1 β’ (π β (π₯ β π β¦ π₯) β (π½ Cn π½)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2106 β¦ cmpt 5231 I cid 5573 βΎ cres 5678 βcfv 6543 (class class class)co 7411 TopOnctopon 22632 Cn ccn 22948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-map 8824 df-top 22616 df-topon 22633 df-cn 22951 |
This theorem is referenced by: xkoinjcn 23411 txconn 23413 imasnopn 23414 imasncld 23415 imasncls 23416 pt1hmeo 23530 istgp2 23815 tmdmulg 23816 tmdlactcn 23826 clsnsg 23834 tgpt0 23843 tlmtgp 23920 nmcn 24580 expcn 24610 divccn 24611 expcnOLD 24612 divccnOLD 24613 cncfmptid 24653 cdivcncf 24661 iirevcn 24670 iihalf1cn 24672 iihalf2cn 24674 icchmeo 24681 evth2 24700 pcocn 24757 pcopt 24762 pcopt2 24763 pcoass 24764 csscld 24990 clsocv 24991 dvcnvlem 25717 resqrtcn 26481 sqrtcn 26482 efrlim 26698 ipasslem7 30344 occllem 30811 hmopidmchi 31659 rmulccn 33194 cxpcncf1 33893 cvxpconn 34519 cvmlift2lem2 34581 cvmlift2lem3 34582 cvmliftphtlem 34594 gg-iihalf1cn 35453 gg-iihalf2cn 35454 gg-icchmeo 35456 gg-rmulccn 35465 knoppcnlem10 35681 cxpcncf2 44914 |
Copyright terms: Public domain | W3C validator |