MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptid Structured version   Visualization version   GIF version

Theorem cnmptid 23546
Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
Assertion
Ref Expression
cnmptid (𝜑 → (𝑥𝑋𝑥) ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐽   𝑥,𝑋

Proof of Theorem cnmptid
StepHypRef Expression
1 mptresid 6002 . 2 ( I ↾ 𝑋) = (𝑥𝑋𝑥)
2 cnmptid.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 idcn 23142 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
42, 3syl 17 . 2 (𝜑 → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
51, 4eqeltrrid 2833 1 (𝜑 → (𝑥𝑋𝑥) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cmpt 5173   I cid 5513  cres 5621  cfv 6482  (class class class)co 7349  TopOnctopon 22795   Cn ccn 23109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-top 22779  df-topon 22796  df-cn 23112
This theorem is referenced by:  xkoinjcn  23572  txconn  23574  imasnopn  23575  imasncld  23576  imasncls  23577  pt1hmeo  23691  istgp2  23976  tmdmulg  23977  tmdlactcn  23987  clsnsg  23995  tgpt0  24004  tlmtgp  24081  nmcn  24731  expcn  24761  divccn  24762  expcnOLD  24763  divccnOLD  24764  cncfmptid  24804  cdivcncf  24812  iirevcn  24822  iihalf1cn  24824  iihalf1cnOLD  24825  iihalf2cn  24827  iihalf2cnOLD  24828  icchmeo  24836  icchmeoOLD  24837  evth2  24857  pcocn  24915  pcopt  24920  pcopt2  24921  pcoass  24922  csscld  25147  clsocv  25148  dvcnvlem  25878  resqrtcn  26657  sqrtcn  26658  efrlim  26877  efrlimOLD  26878  ipasslem7  30780  occllem  31247  hmopidmchi  32095  rmulccn  33895  cxpcncf1  34563  cvxpconn  35219  cvmlift2lem2  35281  cvmlift2lem3  35282  cvmliftphtlem  35294  knoppcnlem10  36480  cxpcncf2  45884
  Copyright terms: Public domain W3C validator