| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmptid | Structured version Visualization version GIF version | ||
| Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| Ref | Expression |
|---|---|
| cnmptid | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptresid 6022 | . 2 ⊢ ( I ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥) | |
| 2 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 3 | idcn 23144 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
| 5 | 1, 4 | eqeltrrid 2833 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ↦ cmpt 5188 I cid 5532 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 TopOnctopon 22797 Cn ccn 23111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-top 22781 df-topon 22798 df-cn 23114 |
| This theorem is referenced by: xkoinjcn 23574 txconn 23576 imasnopn 23577 imasncld 23578 imasncls 23579 pt1hmeo 23693 istgp2 23978 tmdmulg 23979 tmdlactcn 23989 clsnsg 23997 tgpt0 24006 tlmtgp 24083 nmcn 24733 expcn 24763 divccn 24764 expcnOLD 24765 divccnOLD 24766 cncfmptid 24806 cdivcncf 24814 iirevcn 24824 iihalf1cn 24826 iihalf1cnOLD 24827 iihalf2cn 24829 iihalf2cnOLD 24830 icchmeo 24838 icchmeoOLD 24839 evth2 24859 pcocn 24917 pcopt 24922 pcopt2 24923 pcoass 24924 csscld 25149 clsocv 25150 dvcnvlem 25880 resqrtcn 26659 sqrtcn 26660 efrlim 26879 efrlimOLD 26880 ipasslem7 30765 occllem 31232 hmopidmchi 32080 rmulccn 33918 cxpcncf1 34586 cvxpconn 35229 cvmlift2lem2 35291 cvmlift2lem3 35292 cvmliftphtlem 35304 knoppcnlem10 36490 cxpcncf2 45897 |
| Copyright terms: Public domain | W3C validator |