![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmptid | Structured version Visualization version GIF version |
Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
Ref | Expression |
---|---|
cnmptid | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptresid 6080 | . 2 ⊢ ( I ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥) | |
2 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | idcn 23286 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
5 | 1, 4 | eqeltrrid 2849 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ↦ cmpt 5249 I cid 5592 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 TopOnctopon 22937 Cn ccn 23253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-top 22921 df-topon 22938 df-cn 23256 |
This theorem is referenced by: xkoinjcn 23716 txconn 23718 imasnopn 23719 imasncld 23720 imasncls 23721 pt1hmeo 23835 istgp2 24120 tmdmulg 24121 tmdlactcn 24131 clsnsg 24139 tgpt0 24148 tlmtgp 24225 nmcn 24885 expcn 24915 divccn 24916 expcnOLD 24917 divccnOLD 24918 cncfmptid 24958 cdivcncf 24966 iirevcn 24976 iihalf1cn 24978 iihalf1cnOLD 24979 iihalf2cn 24981 iihalf2cnOLD 24982 icchmeo 24990 icchmeoOLD 24991 evth2 25011 pcocn 25069 pcopt 25074 pcopt2 25075 pcoass 25076 csscld 25302 clsocv 25303 dvcnvlem 26034 resqrtcn 26810 sqrtcn 26811 efrlim 27030 efrlimOLD 27031 ipasslem7 30868 occllem 31335 hmopidmchi 32183 rmulccn 33874 cxpcncf1 34572 cvxpconn 35210 cvmlift2lem2 35272 cvmlift2lem3 35273 cvmliftphtlem 35285 knoppcnlem10 36468 cxpcncf2 45820 |
Copyright terms: Public domain | W3C validator |