MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptid Structured version   Visualization version   GIF version

Theorem cnmptid 22910
Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
Assertion
Ref Expression
cnmptid (𝜑 → (𝑥𝑋𝑥) ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐽   𝑥,𝑋

Proof of Theorem cnmptid
StepHypRef Expression
1 mptresid 5984 . 2 ( I ↾ 𝑋) = (𝑥𝑋𝑥)
2 cnmptid.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 idcn 22506 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
42, 3syl 17 . 2 (𝜑 → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
51, 4eqeltrrid 2842 1 (𝜑 → (𝑥𝑋𝑥) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  cmpt 5172   I cid 5511  cres 5616  cfv 6473  (class class class)co 7329  TopOnctopon 22157   Cn ccn 22473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3727  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-ov 7332  df-oprab 7333  df-mpo 7334  df-map 8680  df-top 22141  df-topon 22158  df-cn 22476
This theorem is referenced by:  xkoinjcn  22936  txconn  22938  imasnopn  22939  imasncld  22940  imasncls  22941  pt1hmeo  23055  istgp2  23340  tmdmulg  23341  tmdlactcn  23351  clsnsg  23359  tgpt0  23368  tlmtgp  23445  nmcn  24105  expcn  24133  divccn  24134  cncfmptid  24174  cdivcncf  24182  iirevcn  24191  iihalf1cn  24193  iihalf2cn  24195  icchmeo  24202  evth2  24221  pcocn  24278  pcopt  24283  pcopt2  24284  pcoass  24285  csscld  24511  clsocv  24512  dvcnvlem  25238  resqrtcn  26000  sqrtcn  26001  efrlim  26217  ipasslem7  29427  occllem  29894  hmopidmchi  30742  rmulccn  32117  cxpcncf1  32816  cvxpconn  33444  cvmlift2lem2  33506  cvmlift2lem3  33507  cvmliftphtlem  33519  knoppcnlem10  34773  cxpcncf2  43765
  Copyright terms: Public domain W3C validator