![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnmptid | Structured version Visualization version GIF version |
Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
Ref | Expression |
---|---|
cnmptid | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptresid 6071 | . 2 ⊢ ( I ↾ 𝑋) = (𝑥 ∈ 𝑋 ↦ 𝑥) | |
2 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | idcn 23281 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
5 | 1, 4 | eqeltrrid 2844 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ↦ cmpt 5231 I cid 5582 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 TopOnctopon 22932 Cn ccn 23248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-top 22916 df-topon 22933 df-cn 23251 |
This theorem is referenced by: xkoinjcn 23711 txconn 23713 imasnopn 23714 imasncld 23715 imasncls 23716 pt1hmeo 23830 istgp2 24115 tmdmulg 24116 tmdlactcn 24126 clsnsg 24134 tgpt0 24143 tlmtgp 24220 nmcn 24880 expcn 24910 divccn 24911 expcnOLD 24912 divccnOLD 24913 cncfmptid 24953 cdivcncf 24961 iirevcn 24971 iihalf1cn 24973 iihalf1cnOLD 24974 iihalf2cn 24976 iihalf2cnOLD 24977 icchmeo 24985 icchmeoOLD 24986 evth2 25006 pcocn 25064 pcopt 25069 pcopt2 25070 pcoass 25071 csscld 25297 clsocv 25298 dvcnvlem 26029 resqrtcn 26807 sqrtcn 26808 efrlim 27027 efrlimOLD 27028 ipasslem7 30865 occllem 31332 hmopidmchi 32180 rmulccn 33889 cxpcncf1 34589 cvxpconn 35227 cvmlift2lem2 35289 cvmlift2lem3 35290 cvmliftphtlem 35302 knoppcnlem10 36485 cxpcncf2 45855 |
Copyright terms: Public domain | W3C validator |