MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdprd Structured version   Visualization version   GIF version

Theorem subgdprd 19943
Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
subgdprd.1 𝐻 = (𝐺s 𝐴)
subgdprd.2 (𝜑𝐴 ∈ (SubGrp‘𝐺))
subgdprd.3 (𝜑𝐺dom DProd 𝑆)
subgdprd.4 (𝜑 → ran 𝑆 ⊆ 𝒫 𝐴)
Assertion
Ref Expression
subgdprd (𝜑 → (𝐻 DProd 𝑆) = (𝐺 DProd 𝑆))

Proof of Theorem subgdprd
StepHypRef Expression
1 subgdprd.2 . . . . . 6 (𝜑𝐴 ∈ (SubGrp‘𝐺))
2 subgdprd.1 . . . . . . 7 𝐻 = (𝐺s 𝐴)
32subggrp 19037 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
41, 3syl 17 . . . . 5 (𝜑𝐻 ∈ Grp)
5 eqid 2729 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
65subgacs 19069 . . . . 5 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
7 acsmre 17589 . . . . 5 ((SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
84, 6, 73syl 18 . . . 4 (𝜑 → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
9 subgrcl 19039 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
101, 9syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
11 eqid 2729 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
1211subgacs 19069 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
13 acsmre 17589 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
1410, 12, 133syl 18 . . . . 5 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
15 eqid 2729 . . . . 5 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
16 subgdprd.3 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
17 dprdf 19914 . . . . . . . 8 (𝐺dom DProd 𝑆𝑆:dom 𝑆⟶(SubGrp‘𝐺))
18 frn 6677 . . . . . . . 8 (𝑆:dom 𝑆⟶(SubGrp‘𝐺) → ran 𝑆 ⊆ (SubGrp‘𝐺))
1916, 17, 183syl 18 . . . . . . 7 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
20 mresspw 17529 . . . . . . . 8 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
2114, 20syl 17 . . . . . . 7 (𝜑 → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
2219, 21sstrd 3954 . . . . . 6 (𝜑 → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
23 sspwuni 5059 . . . . . 6 (ran 𝑆 ⊆ 𝒫 (Base‘𝐺) ↔ ran 𝑆 ⊆ (Base‘𝐺))
2422, 23sylib 218 . . . . 5 (𝜑 ran 𝑆 ⊆ (Base‘𝐺))
2514, 15, 24mrcssidd 17562 . . . 4 (𝜑 ran 𝑆 ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
2615mrccl 17548 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ran 𝑆 ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐺))
2714, 24, 26syl2anc 584 . . . . 5 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐺))
28 subgdprd.4 . . . . . . 7 (𝜑 → ran 𝑆 ⊆ 𝒫 𝐴)
29 sspwuni 5059 . . . . . . 7 (ran 𝑆 ⊆ 𝒫 𝐴 ran 𝑆𝐴)
3028, 29sylib 218 . . . . . 6 (𝜑 ran 𝑆𝐴)
3115mrcsscl 17557 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ran 𝑆𝐴𝐴 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ 𝐴)
3214, 30, 1, 31syl3anc 1373 . . . . 5 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ 𝐴)
332subsubg 19057 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → (((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ 𝐴)))
341, 33syl 17 . . . . 5 (𝜑 → (((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ 𝐴)))
3527, 32, 34mpbir2and 713 . . . 4 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐻))
36 eqid 2729 . . . . 5 (mrCls‘(SubGrp‘𝐻)) = (mrCls‘(SubGrp‘𝐻))
3736mrcsscl 17557 . . . 4 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ ran 𝑆 ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∧ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐻)) → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
388, 25, 35, 37syl3anc 1373 . . 3 (𝜑 → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
392subgdmdprd 19942 . . . . . . . . . . 11 (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
401, 39syl 17 . . . . . . . . . 10 (𝜑 → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
4116, 28, 40mpbir2and 713 . . . . . . . . 9 (𝜑𝐻dom DProd 𝑆)
42 eqidd 2730 . . . . . . . . 9 (𝜑 → dom 𝑆 = dom 𝑆)
4341, 42dprdf2 19915 . . . . . . . 8 (𝜑𝑆:dom 𝑆⟶(SubGrp‘𝐻))
4443frnd 6678 . . . . . . 7 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐻))
45 mresspw 17529 . . . . . . . 8 ((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻))
468, 45syl 17 . . . . . . 7 (𝜑 → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻))
4744, 46sstrd 3954 . . . . . 6 (𝜑 → ran 𝑆 ⊆ 𝒫 (Base‘𝐻))
48 sspwuni 5059 . . . . . 6 (ran 𝑆 ⊆ 𝒫 (Base‘𝐻) ↔ ran 𝑆 ⊆ (Base‘𝐻))
4947, 48sylib 218 . . . . 5 (𝜑 ran 𝑆 ⊆ (Base‘𝐻))
508, 36, 49mrcssidd 17562 . . . 4 (𝜑 ran 𝑆 ⊆ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆))
5136mrccl 17548 . . . . . . 7 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ ran 𝑆 ⊆ (Base‘𝐻)) → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐻))
528, 49, 51syl2anc 584 . . . . . 6 (𝜑 → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐻))
532subsubg 19057 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐺) → (((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ⊆ 𝐴)))
541, 53syl 17 . . . . . 6 (𝜑 → (((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ⊆ 𝐴)))
5552, 54mpbid 232 . . . . 5 (𝜑 → (((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ⊆ 𝐴))
5655simpld 494 . . . 4 (𝜑 → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐺))
5715mrcsscl 17557 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ran 𝑆 ⊆ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∧ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆))
5814, 50, 56, 57syl3anc 1373 . . 3 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆))
5938, 58eqssd 3961 . 2 (𝜑 → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
6036dprdspan 19935 . . 3 (𝐻dom DProd 𝑆 → (𝐻 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆))
6141, 60syl 17 . 2 (𝜑 → (𝐻 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆))
6215dprdspan 19935 . . 3 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
6316, 62syl 17 . 2 (𝜑 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
6459, 61, 633eqtr4d 2774 1 (𝜑 → (𝐻 DProd 𝑆) = (𝐺 DProd 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3911  𝒫 cpw 4559   cuni 4867   class class class wbr 5102  dom cdm 5631  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  Moorecmre 17519  mrClscmrc 17520  ACScacs 17522  Grpcgrp 18841  SubGrpcsubg 19028   DProd cdprd 19901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-gsum 17381  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-gim 19167  df-cntz 19225  df-oppg 19254  df-cmn 19688  df-dprd 19903
This theorem is referenced by:  ablfaclem3  19995
  Copyright terms: Public domain W3C validator