Proof of Theorem subgdprd
Step | Hyp | Ref
| Expression |
1 | | subgdprd.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (SubGrp‘𝐺)) |
2 | | subgdprd.1 |
. . . . . . 7
⊢ 𝐻 = (𝐺 ↾s 𝐴) |
3 | 2 | subggrp 18551 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
4 | 1, 3 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ Grp) |
5 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝐻) =
(Base‘𝐻) |
6 | 5 | subgacs 18582 |
. . . . 5
⊢ (𝐻 ∈ Grp →
(SubGrp‘𝐻) ∈
(ACS‘(Base‘𝐻))) |
7 | | acsmre 17160 |
. . . . 5
⊢
((SubGrp‘𝐻)
∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻))) |
8 | 4, 6, 7 | 3syl 18 |
. . . 4
⊢ (𝜑 → (SubGrp‘𝐻) ∈
(Moore‘(Base‘𝐻))) |
9 | | subgrcl 18553 |
. . . . . . 7
⊢ (𝐴 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
10 | 1, 9 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ Grp) |
11 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝐺) |
12 | 11 | subgacs 18582 |
. . . . . 6
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘(Base‘𝐺))) |
13 | | acsmre 17160 |
. . . . . 6
⊢
((SubGrp‘𝐺)
∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
14 | 10, 12, 13 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (SubGrp‘𝐺) ∈
(Moore‘(Base‘𝐺))) |
15 | | eqid 2737 |
. . . . 5
⊢
(mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) |
16 | | subgdprd.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
17 | | dprdf 19398 |
. . . . . . . 8
⊢ (𝐺dom DProd 𝑆 → 𝑆:dom 𝑆⟶(SubGrp‘𝐺)) |
18 | | frn 6557 |
. . . . . . . 8
⊢ (𝑆:dom 𝑆⟶(SubGrp‘𝐺) → ran 𝑆 ⊆ (SubGrp‘𝐺)) |
19 | 16, 17, 18 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺)) |
20 | | mresspw 17100 |
. . . . . . . 8
⊢
((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)) |
21 | 14, 20 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (SubGrp‘𝐺) ⊆ 𝒫
(Base‘𝐺)) |
22 | 19, 21 | sstrd 3916 |
. . . . . 6
⊢ (𝜑 → ran 𝑆 ⊆ 𝒫 (Base‘𝐺)) |
23 | | sspwuni 5013 |
. . . . . 6
⊢ (ran
𝑆 ⊆ 𝒫
(Base‘𝐺) ↔ ∪ ran 𝑆 ⊆ (Base‘𝐺)) |
24 | 22, 23 | sylib 221 |
. . . . 5
⊢ (𝜑 → ∪ ran 𝑆 ⊆ (Base‘𝐺)) |
25 | 14, 15, 24 | mrcssidd 17133 |
. . . 4
⊢ (𝜑 → ∪ ran 𝑆 ⊆ ((mrCls‘(SubGrp‘𝐺))‘∪ ran 𝑆)) |
26 | 15 | mrccl 17119 |
. . . . . 6
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ ran
𝑆 ⊆ (Base‘𝐺)) →
((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆) ∈
(SubGrp‘𝐺)) |
27 | 14, 24, 26 | syl2anc 587 |
. . . . 5
⊢ (𝜑 →
((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆) ∈
(SubGrp‘𝐺)) |
28 | | subgdprd.4 |
. . . . . . 7
⊢ (𝜑 → ran 𝑆 ⊆ 𝒫 𝐴) |
29 | | sspwuni 5013 |
. . . . . . 7
⊢ (ran
𝑆 ⊆ 𝒫 𝐴 ↔ ∪ ran 𝑆 ⊆ 𝐴) |
30 | 28, 29 | sylib 221 |
. . . . . 6
⊢ (𝜑 → ∪ ran 𝑆 ⊆ 𝐴) |
31 | 15 | mrcsscl 17128 |
. . . . . 6
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ ran
𝑆 ⊆ 𝐴 ∧ 𝐴 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘∪ ran 𝑆) ⊆ 𝐴) |
32 | 14, 30, 1, 31 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 →
((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆) ⊆ 𝐴) |
33 | 2 | subsubg 18571 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝐺) →
(((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆) ∈
(SubGrp‘𝐻) ↔
(((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆) ∈
(SubGrp‘𝐺) ∧
((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆) ⊆ 𝐴))) |
34 | 1, 33 | syl 17 |
. . . . 5
⊢ (𝜑 →
(((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆) ∈
(SubGrp‘𝐻) ↔
(((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆) ∈
(SubGrp‘𝐺) ∧
((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆) ⊆ 𝐴))) |
35 | 27, 32, 34 | mpbir2and 713 |
. . . 4
⊢ (𝜑 →
((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆) ∈
(SubGrp‘𝐻)) |
36 | | eqid 2737 |
. . . . 5
⊢
(mrCls‘(SubGrp‘𝐻)) = (mrCls‘(SubGrp‘𝐻)) |
37 | 36 | mrcsscl 17128 |
. . . 4
⊢
(((SubGrp‘𝐻)
∈ (Moore‘(Base‘𝐻)) ∧ ∪ ran
𝑆 ⊆
((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆) ∧
((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆) ∈
(SubGrp‘𝐻)) →
((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆) ⊆
((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆)) |
38 | 8, 25, 35, 37 | syl3anc 1373 |
. . 3
⊢ (𝜑 →
((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆) ⊆
((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆)) |
39 | 2 | subgdmdprd 19426 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴))) |
40 | 1, 39 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴))) |
41 | 16, 28, 40 | mpbir2and 713 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻dom DProd 𝑆) |
42 | | eqidd 2738 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝑆 = dom 𝑆) |
43 | 41, 42 | dprdf2 19399 |
. . . . . . . 8
⊢ (𝜑 → 𝑆:dom 𝑆⟶(SubGrp‘𝐻)) |
44 | 43 | frnd 6558 |
. . . . . . 7
⊢ (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐻)) |
45 | | mresspw 17100 |
. . . . . . . 8
⊢
((SubGrp‘𝐻)
∈ (Moore‘(Base‘𝐻)) → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻)) |
46 | 8, 45 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (SubGrp‘𝐻) ⊆ 𝒫
(Base‘𝐻)) |
47 | 44, 46 | sstrd 3916 |
. . . . . 6
⊢ (𝜑 → ran 𝑆 ⊆ 𝒫 (Base‘𝐻)) |
48 | | sspwuni 5013 |
. . . . . 6
⊢ (ran
𝑆 ⊆ 𝒫
(Base‘𝐻) ↔ ∪ ran 𝑆 ⊆ (Base‘𝐻)) |
49 | 47, 48 | sylib 221 |
. . . . 5
⊢ (𝜑 → ∪ ran 𝑆 ⊆ (Base‘𝐻)) |
50 | 8, 36, 49 | mrcssidd 17133 |
. . . 4
⊢ (𝜑 → ∪ ran 𝑆 ⊆ ((mrCls‘(SubGrp‘𝐻))‘∪ ran 𝑆)) |
51 | 36 | mrccl 17119 |
. . . . . . 7
⊢
(((SubGrp‘𝐻)
∈ (Moore‘(Base‘𝐻)) ∧ ∪ ran
𝑆 ⊆ (Base‘𝐻)) →
((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆) ∈
(SubGrp‘𝐻)) |
52 | 8, 49, 51 | syl2anc 587 |
. . . . . 6
⊢ (𝜑 →
((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆) ∈
(SubGrp‘𝐻)) |
53 | 2 | subsubg 18571 |
. . . . . . 7
⊢ (𝐴 ∈ (SubGrp‘𝐺) →
(((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆) ∈
(SubGrp‘𝐻) ↔
(((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆) ∈
(SubGrp‘𝐺) ∧
((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆) ⊆ 𝐴))) |
54 | 1, 53 | syl 17 |
. . . . . 6
⊢ (𝜑 →
(((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆) ∈
(SubGrp‘𝐻) ↔
(((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆) ∈
(SubGrp‘𝐺) ∧
((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆) ⊆ 𝐴))) |
55 | 52, 54 | mpbid 235 |
. . . . 5
⊢ (𝜑 →
(((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆) ∈
(SubGrp‘𝐺) ∧
((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆) ⊆ 𝐴)) |
56 | 55 | simpld 498 |
. . . 4
⊢ (𝜑 →
((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆) ∈
(SubGrp‘𝐺)) |
57 | 15 | mrcsscl 17128 |
. . . 4
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪ ran
𝑆 ⊆
((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆) ∧
((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆) ∈
(SubGrp‘𝐺)) →
((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆) ⊆
((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆)) |
58 | 14, 50, 56, 57 | syl3anc 1373 |
. . 3
⊢ (𝜑 →
((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆) ⊆
((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆)) |
59 | 38, 58 | eqssd 3923 |
. 2
⊢ (𝜑 →
((mrCls‘(SubGrp‘𝐻))‘∪ ran
𝑆) =
((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆)) |
60 | 36 | dprdspan 19419 |
. . 3
⊢ (𝐻dom DProd 𝑆 → (𝐻 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐻))‘∪ ran 𝑆)) |
61 | 41, 60 | syl 17 |
. 2
⊢ (𝜑 → (𝐻 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐻))‘∪ ran 𝑆)) |
62 | 15 | dprdspan 19419 |
. . 3
⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘∪ ran 𝑆)) |
63 | 16, 62 | syl 17 |
. 2
⊢ (𝜑 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘∪ ran 𝑆)) |
64 | 59, 61, 63 | 3eqtr4d 2787 |
1
⊢ (𝜑 → (𝐻 DProd 𝑆) = (𝐺 DProd 𝑆)) |