MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdprd Structured version   Visualization version   GIF version

Theorem subgdprd 19967
Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
subgdprd.1 𝐻 = (𝐺s 𝐴)
subgdprd.2 (𝜑𝐴 ∈ (SubGrp‘𝐺))
subgdprd.3 (𝜑𝐺dom DProd 𝑆)
subgdprd.4 (𝜑 → ran 𝑆 ⊆ 𝒫 𝐴)
Assertion
Ref Expression
subgdprd (𝜑 → (𝐻 DProd 𝑆) = (𝐺 DProd 𝑆))

Proof of Theorem subgdprd
StepHypRef Expression
1 subgdprd.2 . . . . . 6 (𝜑𝐴 ∈ (SubGrp‘𝐺))
2 subgdprd.1 . . . . . . 7 𝐻 = (𝐺s 𝐴)
32subggrp 19061 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
41, 3syl 17 . . . . 5 (𝜑𝐻 ∈ Grp)
5 eqid 2729 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
65subgacs 19093 . . . . 5 (𝐻 ∈ Grp → (SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)))
7 acsmre 17613 . . . . 5 ((SubGrp‘𝐻) ∈ (ACS‘(Base‘𝐻)) → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
84, 6, 73syl 18 . . . 4 (𝜑 → (SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)))
9 subgrcl 19063 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
101, 9syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
11 eqid 2729 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
1211subgacs 19093 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
13 acsmre 17613 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
1410, 12, 133syl 18 . . . . 5 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
15 eqid 2729 . . . . 5 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
16 subgdprd.3 . . . . . . . 8 (𝜑𝐺dom DProd 𝑆)
17 dprdf 19938 . . . . . . . 8 (𝐺dom DProd 𝑆𝑆:dom 𝑆⟶(SubGrp‘𝐺))
18 frn 6695 . . . . . . . 8 (𝑆:dom 𝑆⟶(SubGrp‘𝐺) → ran 𝑆 ⊆ (SubGrp‘𝐺))
1916, 17, 183syl 18 . . . . . . 7 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐺))
20 mresspw 17553 . . . . . . . 8 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
2114, 20syl 17 . . . . . . 7 (𝜑 → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
2219, 21sstrd 3957 . . . . . 6 (𝜑 → ran 𝑆 ⊆ 𝒫 (Base‘𝐺))
23 sspwuni 5064 . . . . . 6 (ran 𝑆 ⊆ 𝒫 (Base‘𝐺) ↔ ran 𝑆 ⊆ (Base‘𝐺))
2422, 23sylib 218 . . . . 5 (𝜑 ran 𝑆 ⊆ (Base‘𝐺))
2514, 15, 24mrcssidd 17586 . . . 4 (𝜑 ran 𝑆 ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
2615mrccl 17572 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ran 𝑆 ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐺))
2714, 24, 26syl2anc 584 . . . . 5 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐺))
28 subgdprd.4 . . . . . . 7 (𝜑 → ran 𝑆 ⊆ 𝒫 𝐴)
29 sspwuni 5064 . . . . . . 7 (ran 𝑆 ⊆ 𝒫 𝐴 ran 𝑆𝐴)
3028, 29sylib 218 . . . . . 6 (𝜑 ran 𝑆𝐴)
3115mrcsscl 17581 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ran 𝑆𝐴𝐴 ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ 𝐴)
3214, 30, 1, 31syl3anc 1373 . . . . 5 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ 𝐴)
332subsubg 19081 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐺) → (((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ 𝐴)))
341, 33syl 17 . . . . 5 (𝜑 → (((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ 𝐴)))
3527, 32, 34mpbir2and 713 . . . 4 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐻))
36 eqid 2729 . . . . 5 (mrCls‘(SubGrp‘𝐻)) = (mrCls‘(SubGrp‘𝐻))
3736mrcsscl 17581 . . . 4 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ ran 𝑆 ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∧ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ∈ (SubGrp‘𝐻)) → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
388, 25, 35, 37syl3anc 1373 . . 3 (𝜑 → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
392subgdmdprd 19966 . . . . . . . . . . 11 (𝐴 ∈ (SubGrp‘𝐺) → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
401, 39syl 17 . . . . . . . . . 10 (𝜑 → (𝐻dom DProd 𝑆 ↔ (𝐺dom DProd 𝑆 ∧ ran 𝑆 ⊆ 𝒫 𝐴)))
4116, 28, 40mpbir2and 713 . . . . . . . . 9 (𝜑𝐻dom DProd 𝑆)
42 eqidd 2730 . . . . . . . . 9 (𝜑 → dom 𝑆 = dom 𝑆)
4341, 42dprdf2 19939 . . . . . . . 8 (𝜑𝑆:dom 𝑆⟶(SubGrp‘𝐻))
4443frnd 6696 . . . . . . 7 (𝜑 → ran 𝑆 ⊆ (SubGrp‘𝐻))
45 mresspw 17553 . . . . . . . 8 ((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻))
468, 45syl 17 . . . . . . 7 (𝜑 → (SubGrp‘𝐻) ⊆ 𝒫 (Base‘𝐻))
4744, 46sstrd 3957 . . . . . 6 (𝜑 → ran 𝑆 ⊆ 𝒫 (Base‘𝐻))
48 sspwuni 5064 . . . . . 6 (ran 𝑆 ⊆ 𝒫 (Base‘𝐻) ↔ ran 𝑆 ⊆ (Base‘𝐻))
4947, 48sylib 218 . . . . 5 (𝜑 ran 𝑆 ⊆ (Base‘𝐻))
508, 36, 49mrcssidd 17586 . . . 4 (𝜑 ran 𝑆 ⊆ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆))
5136mrccl 17572 . . . . . . 7 (((SubGrp‘𝐻) ∈ (Moore‘(Base‘𝐻)) ∧ ran 𝑆 ⊆ (Base‘𝐻)) → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐻))
528, 49, 51syl2anc 584 . . . . . 6 (𝜑 → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐻))
532subsubg 19081 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐺) → (((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ⊆ 𝐴)))
541, 53syl 17 . . . . . 6 (𝜑 → (((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐻) ↔ (((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ⊆ 𝐴)))
5552, 54mpbid 232 . . . . 5 (𝜑 → (((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐺) ∧ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ⊆ 𝐴))
5655simpld 494 . . . 4 (𝜑 → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐺))
5715mrcsscl 17581 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ran 𝑆 ⊆ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∧ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) ∈ (SubGrp‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆))
5814, 50, 56, 57syl3anc 1373 . . 3 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆) ⊆ ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆))
5938, 58eqssd 3964 . 2 (𝜑 → ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
6036dprdspan 19959 . . 3 (𝐻dom DProd 𝑆 → (𝐻 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆))
6141, 60syl 17 . 2 (𝜑 → (𝐻 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐻))‘ ran 𝑆))
6215dprdspan 19959 . . 3 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
6316, 62syl 17 . 2 (𝜑 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
6459, 61, 633eqtr4d 2774 1 (𝜑 → (𝐻 DProd 𝑆) = (𝐺 DProd 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3914  𝒫 cpw 4563   cuni 4871   class class class wbr 5107  dom cdm 5638  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  Moorecmre 17543  mrClscmrc 17544  ACScacs 17546  Grpcgrp 18865  SubGrpcsubg 19052   DProd cdprd 19925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-gim 19191  df-cntz 19249  df-oppg 19278  df-cmn 19712  df-dprd 19927
This theorem is referenced by:  ablfaclem3  20019
  Copyright terms: Public domain W3C validator