MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natixp Structured version   Visualization version   GIF version

Theorem natixp 17857
Description: A natural transformation is a function from the objects of 𝐶 to homomorphisms from 𝐹(𝑥) to 𝐺(𝑥). (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natrcl.1 𝑁 = (𝐶 Nat 𝐷)
natixp.2 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
natixp.b 𝐵 = (Base‘𝐶)
natixp.j 𝐽 = (Hom ‘𝐷)
Assertion
Ref Expression
natixp (𝜑𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝐶   𝑥,𝐾   𝜑,𝑥   𝑥,𝐷   𝑥,𝐿   𝑥,𝐵   𝑥,𝐽
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem natixp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natixp.2 . . 3 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
2 natrcl.1 . . . 4 𝑁 = (𝐶 Nat 𝐷)
3 natixp.b . . . 4 𝐵 = (Base‘𝐶)
4 eqid 2731 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
5 natixp.j . . . 4 𝐽 = (Hom ‘𝐷)
6 eqid 2731 . . . 4 (comp‘𝐷) = (comp‘𝐷)
72natrcl 17855 . . . . . . 7 (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)))
81, 7syl 17 . . . . . 6 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)))
98simpld 494 . . . . 5 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
10 df-br 5087 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
119, 10sylibr 234 . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
128simprd 495 . . . . 5 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
13 df-br 5087 . . . . 5 (𝐾(𝐶 Func 𝐷)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
1412, 13sylibr 234 . . . 4 (𝜑𝐾(𝐶 Func 𝐷)𝐿)
152, 3, 4, 5, 6, 11, 14isnat 17852 . . 3 (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐾𝑦))((𝑥𝐺𝑦)‘𝑧)) = (((𝑥𝐿𝑦)‘𝑧)(⟨(𝐹𝑥), (𝐾𝑥)⟩(comp‘𝐷)(𝐾𝑦))(𝐴𝑥)))))
161, 15mpbid 232 . 2 (𝜑 → (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐾𝑦))((𝑥𝐺𝑦)‘𝑧)) = (((𝑥𝐿𝑦)‘𝑧)(⟨(𝐹𝑥), (𝐾𝑥)⟩(comp‘𝐷)(𝐾𝑦))(𝐴𝑥))))
1716simpld 494 1 (𝜑𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cop 4577   class class class wbr 5086  cfv 6476  (class class class)co 7341  Xcixp 8816  Basecbs 17115  Hom chom 17167  compcco 17168   Func cfunc 17756   Nat cnat 17846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-ixp 8817  df-func 17760  df-nat 17848
This theorem is referenced by:  natcl  17858  natfn  17859
  Copyright terms: Public domain W3C validator