![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > natixp | Structured version Visualization version GIF version |
Description: A natural transformation is a function from the objects of 𝐶 to homomorphisms from 𝐹(𝑥) to 𝐺(𝑥). (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
natixp.2 | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
natixp.b | ⊢ 𝐵 = (Base‘𝐶) |
natixp.j | ⊢ 𝐽 = (Hom ‘𝐷) |
Ref | Expression |
---|---|
natixp | ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | natixp.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) | |
2 | natrcl.1 | . . . 4 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
3 | natixp.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
4 | eqid 2740 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
5 | natixp.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐷) | |
6 | eqid 2740 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
7 | 2 | natrcl 18018 | . . . . . . 7 ⊢ (𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉) → (〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷) ∧ 〈𝐾, 𝐿〉 ∈ (𝐶 Func 𝐷))) |
8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷) ∧ 〈𝐾, 𝐿〉 ∈ (𝐶 Func 𝐷))) |
9 | 8 | simpld 494 | . . . . 5 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
10 | df-br 5167 | . . . . 5 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) | |
11 | 9, 10 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
12 | 8 | simprd 495 | . . . . 5 ⊢ (𝜑 → 〈𝐾, 𝐿〉 ∈ (𝐶 Func 𝐷)) |
13 | df-br 5167 | . . . . 5 ⊢ (𝐾(𝐶 Func 𝐷)𝐿 ↔ 〈𝐾, 𝐿〉 ∈ (𝐶 Func 𝐷)) | |
14 | 12, 13 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝐾(𝐶 Func 𝐷)𝐿) |
15 | 2, 3, 4, 5, 6, 11, 14 | isnat 18015 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐷)(𝐾‘𝑦))((𝑥𝐺𝑦)‘𝑧)) = (((𝑥𝐿𝑦)‘𝑧)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉(comp‘𝐷)(𝐾‘𝑦))(𝐴‘𝑥))))) |
16 | 1, 15 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐷)(𝐾‘𝑦))((𝑥𝐺𝑦)‘𝑧)) = (((𝑥𝐿𝑦)‘𝑧)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉(comp‘𝐷)(𝐾‘𝑦))(𝐴‘𝑥)))) |
17 | 16 | simpld 494 | 1 ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 〈cop 4654 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Xcixp 8955 Basecbs 17258 Hom chom 17322 compcco 17323 Func cfunc 17918 Nat cnat 18009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-ixp 8956 df-func 17922 df-nat 18011 |
This theorem is referenced by: natcl 18021 natfn 18022 |
Copyright terms: Public domain | W3C validator |