![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > natixp | Structured version Visualization version GIF version |
Description: A natural transformation is a function from the objects of 𝐶 to homomorphisms from 𝐹(𝑥) to 𝐺(𝑥). (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
natixp.2 | ⊢ (𝜑 → 𝐴 ∈ (⟨𝐹, 𝐺⟩𝑁⟨𝐾, 𝐿⟩)) |
natixp.b | ⊢ 𝐵 = (Base‘𝐶) |
natixp.j | ⊢ 𝐽 = (Hom ‘𝐷) |
Ref | Expression |
---|---|
natixp | ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | natixp.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (⟨𝐹, 𝐺⟩𝑁⟨𝐾, 𝐿⟩)) | |
2 | natrcl.1 | . . . 4 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
3 | natixp.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
4 | eqid 2726 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
5 | natixp.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐷) | |
6 | eqid 2726 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
7 | 2 | natrcl 17911 | . . . . . . 7 ⊢ (𝐴 ∈ (⟨𝐹, 𝐺⟩𝑁⟨𝐾, 𝐿⟩) → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))) |
8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))) |
9 | 8 | simpld 494 | . . . . 5 ⊢ (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷)) |
10 | df-br 5142 | . . . . 5 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷)) | |
11 | 9, 10 | sylibr 233 | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
12 | 8 | simprd 495 | . . . . 5 ⊢ (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)) |
13 | df-br 5142 | . . . . 5 ⊢ (𝐾(𝐶 Func 𝐷)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)) | |
14 | 12, 13 | sylibr 233 | . . . 4 ⊢ (𝜑 → 𝐾(𝐶 Func 𝐷)𝐿) |
15 | 2, 3, 4, 5, 6, 11, 14 | isnat 17908 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺⟩𝑁⟨𝐾, 𝐿⟩) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝐴‘𝑦)(⟨(𝐹‘𝑥), (𝐹‘𝑦)⟩(comp‘𝐷)(𝐾‘𝑦))((𝑥𝐺𝑦)‘𝑧)) = (((𝑥𝐿𝑦)‘𝑧)(⟨(𝐹‘𝑥), (𝐾‘𝑥)⟩(comp‘𝐷)(𝐾‘𝑦))(𝐴‘𝑥))))) |
16 | 1, 15 | mpbid 231 | . 2 ⊢ (𝜑 → (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝐴‘𝑦)(⟨(𝐹‘𝑥), (𝐹‘𝑦)⟩(comp‘𝐷)(𝐾‘𝑦))((𝑥𝐺𝑦)‘𝑧)) = (((𝑥𝐿𝑦)‘𝑧)(⟨(𝐹‘𝑥), (𝐾‘𝑥)⟩(comp‘𝐷)(𝐾‘𝑦))(𝐴‘𝑥)))) |
17 | 16 | simpld 494 | 1 ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ⟨cop 4629 class class class wbr 5141 ‘cfv 6536 (class class class)co 7404 Xcixp 8890 Basecbs 17151 Hom chom 17215 compcco 17216 Func cfunc 17811 Nat cnat 17902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7971 df-2nd 7972 df-ixp 8891 df-func 17815 df-nat 17904 |
This theorem is referenced by: natcl 17914 natfn 17915 |
Copyright terms: Public domain | W3C validator |