MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natixp Structured version   Visualization version   GIF version

Theorem natixp 18020
Description: A natural transformation is a function from the objects of 𝐶 to homomorphisms from 𝐹(𝑥) to 𝐺(𝑥). (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natrcl.1 𝑁 = (𝐶 Nat 𝐷)
natixp.2 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
natixp.b 𝐵 = (Base‘𝐶)
natixp.j 𝐽 = (Hom ‘𝐷)
Assertion
Ref Expression
natixp (𝜑𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝐶   𝑥,𝐾   𝜑,𝑥   𝑥,𝐷   𝑥,𝐿   𝑥,𝐵   𝑥,𝐽
Allowed substitution hint:   𝑁(𝑥)

Proof of Theorem natixp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natixp.2 . . 3 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
2 natrcl.1 . . . 4 𝑁 = (𝐶 Nat 𝐷)
3 natixp.b . . . 4 𝐵 = (Base‘𝐶)
4 eqid 2740 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
5 natixp.j . . . 4 𝐽 = (Hom ‘𝐷)
6 eqid 2740 . . . 4 (comp‘𝐷) = (comp‘𝐷)
72natrcl 18018 . . . . . . 7 (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)))
81, 7syl 17 . . . . . 6 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) ∧ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷)))
98simpld 494 . . . . 5 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
10 df-br 5167 . . . . 5 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
119, 10sylibr 234 . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
128simprd 495 . . . . 5 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
13 df-br 5167 . . . . 5 (𝐾(𝐶 Func 𝐷)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐶 Func 𝐷))
1412, 13sylibr 234 . . . 4 (𝜑𝐾(𝐶 Func 𝐷)𝐿)
152, 3, 4, 5, 6, 11, 14isnat 18015 . . 3 (𝜑 → (𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩) ↔ (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐾𝑦))((𝑥𝐺𝑦)‘𝑧)) = (((𝑥𝐿𝑦)‘𝑧)(⟨(𝐹𝑥), (𝐾𝑥)⟩(comp‘𝐷)(𝐾𝑦))(𝐴𝑥)))))
161, 15mpbid 232 . 2 (𝜑 → (𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ ∀𝑥𝐵𝑦𝐵𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝐴𝑦)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐷)(𝐾𝑦))((𝑥𝐺𝑦)‘𝑧)) = (((𝑥𝐿𝑦)‘𝑧)(⟨(𝐹𝑥), (𝐾𝑥)⟩(comp‘𝐷)(𝐾𝑦))(𝐴𝑥))))
1716simpld 494 1 (𝜑𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cop 4654   class class class wbr 5166  cfv 6573  (class class class)co 7448  Xcixp 8955  Basecbs 17258  Hom chom 17322  compcco 17323   Func cfunc 17918   Nat cnat 18009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-ixp 8956  df-func 17922  df-nat 18011
This theorem is referenced by:  natcl  18021  natfn  18022
  Copyright terms: Public domain W3C validator