| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > natixp | Structured version Visualization version GIF version | ||
| Description: A natural transformation is a function from the objects of 𝐶 to homomorphisms from 𝐹(𝑥) to 𝐺(𝑥). (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| natixp.2 | ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) |
| natixp.b | ⊢ 𝐵 = (Base‘𝐶) |
| natixp.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| Ref | Expression |
|---|---|
| natixp | ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natixp.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉)) | |
| 2 | natrcl.1 | . . . 4 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 3 | natixp.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | eqid 2736 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 5 | natixp.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 6 | eqid 2736 | . . . 4 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 7 | 2 | natrcl 17971 | . . . . . . 7 ⊢ (𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉) → (〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷) ∧ 〈𝐾, 𝐿〉 ∈ (𝐶 Func 𝐷))) |
| 8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷) ∧ 〈𝐾, 𝐿〉 ∈ (𝐶 Func 𝐷))) |
| 9 | 8 | simpld 494 | . . . . 5 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
| 10 | df-br 5125 | . . . . 5 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) | |
| 11 | 9, 10 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 12 | 8 | simprd 495 | . . . . 5 ⊢ (𝜑 → 〈𝐾, 𝐿〉 ∈ (𝐶 Func 𝐷)) |
| 13 | df-br 5125 | . . . . 5 ⊢ (𝐾(𝐶 Func 𝐷)𝐿 ↔ 〈𝐾, 𝐿〉 ∈ (𝐶 Func 𝐷)) | |
| 14 | 12, 13 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝐾(𝐶 Func 𝐷)𝐿) |
| 15 | 2, 3, 4, 5, 6, 11, 14 | isnat 17968 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (〈𝐹, 𝐺〉𝑁〈𝐾, 𝐿〉) ↔ (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐷)(𝐾‘𝑦))((𝑥𝐺𝑦)‘𝑧)) = (((𝑥𝐿𝑦)‘𝑧)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉(comp‘𝐷)(𝐾‘𝑦))(𝐴‘𝑥))))) |
| 16 | 1, 15 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥(Hom ‘𝐶)𝑦)((𝐴‘𝑦)(〈(𝐹‘𝑥), (𝐹‘𝑦)〉(comp‘𝐷)(𝐾‘𝑦))((𝑥𝐺𝑦)‘𝑧)) = (((𝑥𝐿𝑦)‘𝑧)(〈(𝐹‘𝑥), (𝐾‘𝑥)〉(comp‘𝐷)(𝐾‘𝑦))(𝐴‘𝑥)))) |
| 17 | 16 | simpld 494 | 1 ⊢ (𝜑 → 𝐴 ∈ X𝑥 ∈ 𝐵 ((𝐹‘𝑥)𝐽(𝐾‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 〈cop 4612 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Xcixp 8916 Basecbs 17233 Hom chom 17287 compcco 17288 Func cfunc 17872 Nat cnat 17962 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-ixp 8917 df-func 17876 df-nat 17964 |
| This theorem is referenced by: natcl 17974 natfn 17975 |
| Copyright terms: Public domain | W3C validator |