![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nat1st2nd | Structured version Visualization version GIF version |
Description: Rewrite the natural transformation predicate with separated functor parts. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
nat1st2nd.2 | ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) |
Ref | Expression |
---|---|
nat1st2nd | ⊢ (𝜑 → 𝐴 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nat1st2nd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) | |
2 | relfunc 17913 | . . . 4 ⊢ Rel (𝐶 Func 𝐷) | |
3 | natrcl.1 | . . . . . . 7 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
4 | 3 | natrcl 18005 | . . . . . 6 ⊢ (𝐴 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
6 | 5 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
7 | 1st2nd 8063 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
8 | 2, 6, 7 | sylancr 587 | . . 3 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
9 | 5 | simprd 495 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
10 | 1st2nd 8063 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) | |
11 | 2, 9, 10 | sylancr 587 | . . 3 ⊢ (𝜑 → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) |
12 | 8, 11 | oveq12d 7449 | . 2 ⊢ (𝜑 → (𝐹𝑁𝐺) = (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
13 | 1, 12 | eleqtrd 2841 | 1 ⊢ (𝜑 → 𝐴 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 〈cop 4637 Rel wrel 5694 ‘cfv 6563 (class class class)co 7431 1st c1st 8011 2nd c2nd 8012 Func cfunc 17905 Nat cnat 17996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-ixp 8937 df-func 17909 df-nat 17998 |
This theorem is referenced by: fuccocl 18021 fuclid 18023 fucrid 18024 fucass 18025 fucsect 18029 invfuc 18031 fucpropd 18034 evlfcllem 18278 evlfcl 18279 curfuncf 18295 yonedalem3a 18331 yonedalem3b 18336 yonedainv 18338 yonffthlem 18339 |
Copyright terms: Public domain | W3C validator |