![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nat1st2nd | Structured version Visualization version GIF version |
Description: Rewrite the natural transformation predicate with separated functor parts. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
nat1st2nd.2 | ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) |
Ref | Expression |
---|---|
nat1st2nd | ⊢ (𝜑 → 𝐴 ∈ (⟨(1st ‘𝐹), (2nd ‘𝐹)⟩𝑁⟨(1st ‘𝐺), (2nd ‘𝐺)⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nat1st2nd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) | |
2 | relfunc 17808 | . . . 4 ⊢ Rel (𝐶 Func 𝐷) | |
3 | natrcl.1 | . . . . . . 7 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
4 | 3 | natrcl 17897 | . . . . . 6 ⊢ (𝐴 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
6 | 5 | simpld 495 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
7 | 1st2nd 8021 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st ‘𝐹), (2nd ‘𝐹)⟩) | |
8 | 2, 6, 7 | sylancr 587 | . . 3 ⊢ (𝜑 → 𝐹 = ⟨(1st ‘𝐹), (2nd ‘𝐹)⟩) |
9 | 5 | simprd 496 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
10 | 1st2nd 8021 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = ⟨(1st ‘𝐺), (2nd ‘𝐺)⟩) | |
11 | 2, 9, 10 | sylancr 587 | . . 3 ⊢ (𝜑 → 𝐺 = ⟨(1st ‘𝐺), (2nd ‘𝐺)⟩) |
12 | 8, 11 | oveq12d 7423 | . 2 ⊢ (𝜑 → (𝐹𝑁𝐺) = (⟨(1st ‘𝐹), (2nd ‘𝐹)⟩𝑁⟨(1st ‘𝐺), (2nd ‘𝐺)⟩)) |
13 | 1, 12 | eleqtrd 2835 | 1 ⊢ (𝜑 → 𝐴 ∈ (⟨(1st ‘𝐹), (2nd ‘𝐹)⟩𝑁⟨(1st ‘𝐺), (2nd ‘𝐺)⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⟨cop 4633 Rel wrel 5680 ‘cfv 6540 (class class class)co 7405 1st c1st 7969 2nd c2nd 7970 Func cfunc 17800 Nat cnat 17888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-ixp 8888 df-func 17804 df-nat 17890 |
This theorem is referenced by: fuccocl 17913 fuclid 17915 fucrid 17916 fucass 17917 fucsect 17921 invfuc 17923 fucpropd 17926 evlfcllem 18170 evlfcl 18171 curfuncf 18187 yonedalem3a 18223 yonedalem3b 18228 yonedainv 18230 yonffthlem 18231 |
Copyright terms: Public domain | W3C validator |