MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nat1st2nd Structured version   Visualization version   GIF version

Theorem nat1st2nd 17972
Description: Rewrite the natural transformation predicate with separated functor parts. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natrcl.1 𝑁 = (𝐶 Nat 𝐷)
nat1st2nd.2 (𝜑𝐴 ∈ (𝐹𝑁𝐺))
Assertion
Ref Expression
nat1st2nd (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))

Proof of Theorem nat1st2nd
StepHypRef Expression
1 nat1st2nd.2 . 2 (𝜑𝐴 ∈ (𝐹𝑁𝐺))
2 relfunc 17880 . . . 4 Rel (𝐶 Func 𝐷)
3 natrcl.1 . . . . . . 7 𝑁 = (𝐶 Nat 𝐷)
43natrcl 17971 . . . . . 6 (𝐴 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
51, 4syl 17 . . . . 5 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
65simpld 494 . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
7 1st2nd 8043 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
82, 6, 7sylancr 587 . . 3 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
95simprd 495 . . . 4 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
10 1st2nd 8043 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
112, 9, 10sylancr 587 . . 3 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
128, 11oveq12d 7428 . 2 (𝜑 → (𝐹𝑁𝐺) = (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
131, 12eleqtrd 2837 1 (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4612  Rel wrel 5664  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992   Func cfunc 17872   Nat cnat 17962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-ixp 8917  df-func 17876  df-nat 17964
This theorem is referenced by:  fuccocl  17985  fuclid  17987  fucrid  17988  fucass  17989  fucsect  17993  invfuc  17995  fucpropd  17998  evlfcllem  18238  evlfcl  18239  curfuncf  18255  yonedalem3a  18291  yonedalem3b  18296  yonedainv  18298  yonffthlem  18299  fuco22nat  49224  fuco22a  49228  fucocolem1  49231  fucocolem3  49233  fucoco  49235  fucolid  49239  fucorid  49240  fucorid2  49241  precofvalALT  49246  precofval2  49247  termcnatval  49387  diag2f1olem  49388  concl  49498  coccl  49499  concom  49500  coccom  49501
  Copyright terms: Public domain W3C validator