MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nat1st2nd Structured version   Visualization version   GIF version

Theorem nat1st2nd 17756
Description: Rewrite the natural transformation predicate with separated functor parts. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natrcl.1 𝑁 = (𝐶 Nat 𝐷)
nat1st2nd.2 (𝜑𝐴 ∈ (𝐹𝑁𝐺))
Assertion
Ref Expression
nat1st2nd (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))

Proof of Theorem nat1st2nd
StepHypRef Expression
1 nat1st2nd.2 . 2 (𝜑𝐴 ∈ (𝐹𝑁𝐺))
2 relfunc 17666 . . . 4 Rel (𝐶 Func 𝐷)
3 natrcl.1 . . . . . . 7 𝑁 = (𝐶 Nat 𝐷)
43natrcl 17755 . . . . . 6 (𝐴 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
51, 4syl 17 . . . . 5 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
65simpld 495 . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
7 1st2nd 7940 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
82, 6, 7sylancr 587 . . 3 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
95simprd 496 . . . 4 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
10 1st2nd 7940 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
112, 9, 10sylancr 587 . . 3 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
128, 11oveq12d 7347 . 2 (𝜑 → (𝐹𝑁𝐺) = (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
131, 12eleqtrd 2839 1 (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cop 4578  Rel wrel 5619  cfv 6473  (class class class)co 7329  1st c1st 7889  2nd c2nd 7890   Func cfunc 17658   Nat cnat 17746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-ov 7332  df-oprab 7333  df-mpo 7334  df-1st 7891  df-2nd 7892  df-ixp 8749  df-func 17662  df-nat 17748
This theorem is referenced by:  fuccocl  17771  fuclid  17773  fucrid  17774  fucass  17775  fucsect  17779  invfuc  17781  fucpropd  17784  evlfcllem  18028  evlfcl  18029  curfuncf  18045  yonedalem3a  18081  yonedalem3b  18086  yonedainv  18088  yonffthlem  18089
  Copyright terms: Public domain W3C validator