| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nat1st2nd | Structured version Visualization version GIF version | ||
| Description: Rewrite the natural transformation predicate with separated functor parts. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| nat1st2nd.2 | ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) |
| Ref | Expression |
|---|---|
| nat1st2nd | ⊢ (𝜑 → 𝐴 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nat1st2nd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) | |
| 2 | relfunc 17880 | . . . 4 ⊢ Rel (𝐶 Func 𝐷) | |
| 3 | natrcl.1 | . . . . . . 7 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 4 | 3 | natrcl 17971 | . . . . . 6 ⊢ (𝐴 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
| 6 | 5 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 7 | 1st2nd 8043 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 8 | 2, 6, 7 | sylancr 587 | . . 3 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 9 | 5 | simprd 495 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
| 10 | 1st2nd 8043 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) | |
| 11 | 2, 9, 10 | sylancr 587 | . . 3 ⊢ (𝜑 → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) |
| 12 | 8, 11 | oveq12d 7428 | . 2 ⊢ (𝜑 → (𝐹𝑁𝐺) = (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
| 13 | 1, 12 | eleqtrd 2837 | 1 ⊢ (𝜑 → 𝐴 ∈ (〈(1st ‘𝐹), (2nd ‘𝐹)〉𝑁〈(1st ‘𝐺), (2nd ‘𝐺)〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4612 Rel wrel 5664 ‘cfv 6536 (class class class)co 7410 1st c1st 7991 2nd c2nd 7992 Func cfunc 17872 Nat cnat 17962 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-ixp 8917 df-func 17876 df-nat 17964 |
| This theorem is referenced by: fuccocl 17985 fuclid 17987 fucrid 17988 fucass 17989 fucsect 17993 invfuc 17995 fucpropd 17998 evlfcllem 18238 evlfcl 18239 curfuncf 18255 yonedalem3a 18291 yonedalem3b 18296 yonedainv 18298 yonffthlem 18299 fuco22nat 49224 fuco22a 49228 fucocolem1 49231 fucocolem3 49233 fucoco 49235 fucolid 49239 fucorid 49240 fucorid2 49241 precofvalALT 49246 precofval2 49247 termcnatval 49387 diag2f1olem 49388 concl 49498 coccl 49499 concom 49500 coccom 49501 |
| Copyright terms: Public domain | W3C validator |