MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nat1st2nd Structured version   Visualization version   GIF version

Theorem nat1st2nd 17856
Description: Rewrite the natural transformation predicate with separated functor parts. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natrcl.1 𝑁 = (𝐶 Nat 𝐷)
nat1st2nd.2 (𝜑𝐴 ∈ (𝐹𝑁𝐺))
Assertion
Ref Expression
nat1st2nd (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))

Proof of Theorem nat1st2nd
StepHypRef Expression
1 nat1st2nd.2 . 2 (𝜑𝐴 ∈ (𝐹𝑁𝐺))
2 relfunc 17764 . . . 4 Rel (𝐶 Func 𝐷)
3 natrcl.1 . . . . . . 7 𝑁 = (𝐶 Nat 𝐷)
43natrcl 17855 . . . . . 6 (𝐴 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
51, 4syl 17 . . . . 5 (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
65simpld 494 . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
7 1st2nd 7966 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
82, 6, 7sylancr 587 . . 3 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
95simprd 495 . . . 4 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
10 1st2nd 7966 . . . 4 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
112, 9, 10sylancr 587 . . 3 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
128, 11oveq12d 7359 . 2 (𝜑 → (𝐹𝑁𝐺) = (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
131, 12eleqtrd 2833 1 (𝜑𝐴 ∈ (⟨(1st𝐹), (2nd𝐹)⟩𝑁⟨(1st𝐺), (2nd𝐺)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4577  Rel wrel 5616  cfv 6476  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915   Func cfunc 17756   Nat cnat 17846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-ixp 8817  df-func 17760  df-nat 17848
This theorem is referenced by:  fuccocl  17869  fuclid  17871  fucrid  17872  fucass  17873  fucsect  17877  invfuc  17879  fucpropd  17882  evlfcllem  18122  evlfcl  18123  curfuncf  18139  yonedalem3a  18175  yonedalem3b  18180  yonedainv  18182  yonffthlem  18183  natoppf2  49262  fuco22nat  49378  fuco22a  49382  fucocolem1  49385  fucocolem3  49387  fucoco  49389  fucolid  49393  fucorid  49394  fucorid2  49395  precofvalALT  49400  precofval2  49401  termcnatval  49567  diag2f1olem  49568  funcsn  49573  0fucterm  49575  concl  49693  coccl  49694  concom  49695  coccom  49696
  Copyright terms: Public domain W3C validator