![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nat1st2nd | Structured version Visualization version GIF version |
Description: Rewrite the natural transformation predicate with separated functor parts. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
nat1st2nd.2 | ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) |
Ref | Expression |
---|---|
nat1st2nd | ⊢ (𝜑 → 𝐴 ∈ (⟨(1st ‘𝐹), (2nd ‘𝐹)⟩𝑁⟨(1st ‘𝐺), (2nd ‘𝐺)⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nat1st2nd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) | |
2 | relfunc 17821 | . . . 4 ⊢ Rel (𝐶 Func 𝐷) | |
3 | natrcl.1 | . . . . . . 7 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
4 | 3 | natrcl 17913 | . . . . . 6 ⊢ (𝐴 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
6 | 5 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
7 | 1st2nd 8024 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st ‘𝐹), (2nd ‘𝐹)⟩) | |
8 | 2, 6, 7 | sylancr 586 | . . 3 ⊢ (𝜑 → 𝐹 = ⟨(1st ‘𝐹), (2nd ‘𝐹)⟩) |
9 | 5 | simprd 495 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
10 | 1st2nd 8024 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = ⟨(1st ‘𝐺), (2nd ‘𝐺)⟩) | |
11 | 2, 9, 10 | sylancr 586 | . . 3 ⊢ (𝜑 → 𝐺 = ⟨(1st ‘𝐺), (2nd ‘𝐺)⟩) |
12 | 8, 11 | oveq12d 7423 | . 2 ⊢ (𝜑 → (𝐹𝑁𝐺) = (⟨(1st ‘𝐹), (2nd ‘𝐹)⟩𝑁⟨(1st ‘𝐺), (2nd ‘𝐺)⟩)) |
13 | 1, 12 | eleqtrd 2829 | 1 ⊢ (𝜑 → 𝐴 ∈ (⟨(1st ‘𝐹), (2nd ‘𝐹)⟩𝑁⟨(1st ‘𝐺), (2nd ‘𝐺)⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⟨cop 4629 Rel wrel 5674 ‘cfv 6537 (class class class)co 7405 1st c1st 7972 2nd c2nd 7973 Func cfunc 17813 Nat cnat 17904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-ixp 8894 df-func 17817 df-nat 17906 |
This theorem is referenced by: fuccocl 17929 fuclid 17931 fucrid 17932 fucass 17933 fucsect 17937 invfuc 17939 fucpropd 17942 evlfcllem 18186 evlfcl 18187 curfuncf 18203 yonedalem3a 18239 yonedalem3b 18244 yonedainv 18246 yonffthlem 18247 |
Copyright terms: Public domain | W3C validator |