| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > natrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
| Ref | Expression |
|---|---|
| natrcl | ⊢ (𝐴 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
| 2 | eqid 2735 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | eqid 2735 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 4 | eqid 2735 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 5 | eqid 2735 | . . 3 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
| 6 | 1, 2, 3, 4, 5 | natfval 17960 | . 2 ⊢ 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ ⦋(1st ‘𝑓) / 𝑟⦌⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
| 7 | 6 | elmpocl 7646 | 1 ⊢ (𝐴 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 ⦋csb 3874 〈cop 4607 ‘cfv 6530 (class class class)co 7403 1st c1st 7984 2nd c2nd 7985 Xcixp 8909 Basecbs 17226 Hom chom 17280 compcco 17281 Func cfunc 17865 Nat cnat 17955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-ixp 8910 df-func 17869 df-nat 17957 |
| This theorem is referenced by: nat1st2nd 17965 natixp 17966 nati 17969 fucco 17976 fuccocl 17978 fuclid 17980 fucrid 17981 fucass 17982 natrcl2 49092 natrcl3 49093 xpcfucco2 49121 fuco22nat 49205 fuco22a 49209 fucocolem1 49212 fucocolem2 49213 fucocolem3 49214 fucocolem4 49215 fucoco 49216 prcof21a 49249 lanup 49463 ranup 49464 islmd 49483 iscmd 49484 |
| Copyright terms: Public domain | W3C validator |