MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natrcl Structured version   Visualization version   GIF version

Theorem natrcl 17860
Description: Reverse closure for a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypothesis
Ref Expression
natrcl.1 𝑁 = (𝐶 Nat 𝐷)
Assertion
Ref Expression
natrcl (𝐴 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))

Proof of Theorem natrcl
Dummy variables 𝑥 𝑓 𝑦 𝑎 𝑔 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natrcl.1 . . 3 𝑁 = (𝐶 Nat 𝐷)
2 eqid 2731 . . 3 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2731 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2731 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
5 eqid 2731 . . 3 (comp‘𝐷) = (comp‘𝐷)
61, 2, 3, 4, 5natfval 17856 . 2 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝐶)((𝑟𝑥)(Hom ‘𝐷)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝐷)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝐷)(𝑠𝑦))(𝑎𝑥))})
76elmpocl 7587 1 (𝐴 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  csb 3845  cop 4579  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Xcixp 8821  Basecbs 17120  Hom chom 17172  compcco 17173   Func cfunc 17761   Nat cnat 17851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-ixp 8822  df-func 17765  df-nat 17853
This theorem is referenced by:  nat1st2nd  17861  natixp  17862  nati  17865  fucco  17872  fuccocl  17874  fuclid  17876  fucrid  17877  fucass  17878  natrcl2  49324  natrcl3  49325  natoppf2  49330  natoppfb  49331  xpcfucco2  49356  fuco22nat  49446  fuco22a  49450  fucocolem1  49453  fucocolem2  49454  fucocolem3  49455  fucocolem4  49456  fucoco  49457  prcof21a  49491  fucoppcco  49509  lanup  49741  ranup  49742  islmd  49765  iscmd  49766
  Copyright terms: Public domain W3C validator