![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > natrcl | Structured version Visualization version GIF version |
Description: Reverse closure for a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
natrcl.1 | ⊢ 𝑁 = (𝐶 Nat 𝐷) |
Ref | Expression |
---|---|
natrcl | ⊢ (𝐴 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | natrcl.1 | . . 3 ⊢ 𝑁 = (𝐶 Nat 𝐷) | |
2 | eqid 2733 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | eqid 2733 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | eqid 2733 | . . 3 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
5 | eqid 2733 | . . 3 ⊢ (comp‘𝐷) = (comp‘𝐷) | |
6 | 1, 2, 3, 4, 5 | natfval 17897 | . 2 ⊢ 𝑁 = (𝑓 ∈ (𝐶 Func 𝐷), 𝑔 ∈ (𝐶 Func 𝐷) ↦ ⦋(1st ‘𝑓) / 𝑟⦌⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐶)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)((𝑎‘𝑦)(⟨(𝑟‘𝑥), (𝑟‘𝑦)⟩(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(⟨(𝑟‘𝑥), (𝑠‘𝑥)⟩(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
7 | 6 | elmpocl 7648 | 1 ⊢ (𝐴 ∈ (𝐹𝑁𝐺) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 {crab 3433 ⦋csb 3894 ⟨cop 4635 ‘cfv 6544 (class class class)co 7409 1st c1st 7973 2nd c2nd 7974 Xcixp 8891 Basecbs 17144 Hom chom 17208 compcco 17209 Func cfunc 17804 Nat cnat 17892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-ixp 8892 df-func 17808 df-nat 17894 |
This theorem is referenced by: nat1st2nd 17902 natixp 17903 nati 17906 fucco 17915 fuccocl 17917 fuclid 17919 fucrid 17920 fucass 17921 |
Copyright terms: Public domain | W3C validator |