Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p7 Structured version   Visualization version   GIF version

Theorem aks4d1p7 42040
Description: Technical step in AKS lemma 4.1 (Contributed by metakunt, 31-Oct-2024.)
Hypotheses
Ref Expression
aks4d1p7.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p7.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p7.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p7.4 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
Assertion
Ref Expression
aks4d1p7 (𝜑 → ∃𝑝 ∈ ℙ (𝑝𝑅 ∧ ¬ 𝑝𝑁))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑘,𝑁,𝑝   𝑅,𝑘,𝑝   𝑅,𝑟   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑟,𝑝)   𝐴(𝑘,𝑝)   𝐵(𝑘,𝑝)   𝑁(𝑟)

Proof of Theorem aks4d1p7
Dummy variables 𝑜 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks4d1p7.1 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘3))
21adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁)) → 𝑁 ∈ (ℤ‘3))
3 aks4d1p7.2 . . . . 5 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
4 aks4d1p7.3 . . . . 5 𝐵 = (⌈‘((2 logb 𝑁)↑5))
5 aks4d1p7.4 . . . . 5 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
6 breq1 5169 . . . . . . . . 9 (𝑝 = 𝑞 → (𝑝𝑅𝑞𝑅))
7 breq1 5169 . . . . . . . . 9 (𝑝 = 𝑞 → (𝑝𝑁𝑞𝑁))
86, 7imbi12d 344 . . . . . . . 8 (𝑝 = 𝑞 → ((𝑝𝑅𝑝𝑁) ↔ (𝑞𝑅𝑞𝑁)))
98cbvralvw 3243 . . . . . . 7 (∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁) ↔ ∀𝑞 ∈ ℙ (𝑞𝑅𝑞𝑁))
109biimpi 216 . . . . . 6 (∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁) → ∀𝑞 ∈ ℙ (𝑞𝑅𝑞𝑁))
1110adantl 481 . . . . 5 ((𝜑 ∧ ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁)) → ∀𝑞 ∈ ℙ (𝑞𝑅𝑞𝑁))
122, 3, 4, 5, 11aks4d1p7d1 42039 . . . 4 ((𝜑 ∧ ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁)) → 𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))))
135a1i 11 . . . . . . . . 9 (𝜑𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ))
14 ltso 11370 . . . . . . . . . . 11 < Or ℝ
1514a1i 11 . . . . . . . . . 10 (𝜑 → < Or ℝ)
16 fzfid 14024 . . . . . . . . . . . 12 (𝜑 → (1...𝐵) ∈ Fin)
17 ssrab2 4103 . . . . . . . . . . . . 13 {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ (1...𝐵)
1817a1i 11 . . . . . . . . . . . 12 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ (1...𝐵))
1916, 18ssfid 9329 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin)
201, 3, 4aks4d1p3 42035 . . . . . . . . . . . 12 (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
21 rabn0 4412 . . . . . . . . . . . 12 ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅ ↔ ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
2220, 21sylibr 234 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅)
23 elfznn 13613 . . . . . . . . . . . . . . . 16 (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℕ)
2423adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℕ)
2524nnred 12308 . . . . . . . . . . . . . 14 ((𝜑𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℝ)
2625ex 412 . . . . . . . . . . . . 13 (𝜑 → (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℝ))
2726ssrdv 4014 . . . . . . . . . . . 12 (𝜑 → (1...𝐵) ⊆ ℝ)
2818, 27sstrd 4019 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
2919, 22, 283jca 1128 . . . . . . . . . 10 (𝜑 → ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ))
30 fiinfcl 9570 . . . . . . . . . 10 (( < Or ℝ ∧ ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴})
3115, 29, 30syl2anc 583 . . . . . . . . 9 (𝜑 → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴})
3213, 31eqeltrd 2844 . . . . . . . 8 (𝜑𝑅 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴})
33 breq1 5169 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑟𝐴𝑅𝐴))
3433notbid 318 . . . . . . . . 9 (𝑟 = 𝑅 → (¬ 𝑟𝐴 ↔ ¬ 𝑅𝐴))
3534elrab 3708 . . . . . . . 8 (𝑅 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ↔ (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
3632, 35sylib 218 . . . . . . 7 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
3736simprd 495 . . . . . 6 (𝜑 → ¬ 𝑅𝐴)
381, 3, 4, 5aks4d1p4 42036 . . . . . . . . . . . . 13 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
3938simpld 494 . . . . . . . . . . . 12 (𝜑𝑅 ∈ (1...𝐵))
4039elfzelzd 13585 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℤ)
41 eluzelz 12913 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
421, 41syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
43 2re 12367 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
4443a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ)
45 2pos 12396 . . . . . . . . . . . . . . . . 17 0 < 2
4645a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 2)
474a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
4842zred 12747 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ ℝ)
49 0red 11293 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 ∈ ℝ)
50 3re 12373 . . . . . . . . . . . . . . . . . . . . . . 23 3 ∈ ℝ
5150a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 3 ∈ ℝ)
52 3pos 12398 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 3
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 < 3)
54 eluzle 12916 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
551, 54syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 3 ≤ 𝑁)
5649, 51, 48, 53, 55ltletrd 11450 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 < 𝑁)
57 1red 11291 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 ∈ ℝ)
58 1lt2 12464 . . . . . . . . . . . . . . . . . . . . . . . 24 1 < 2
5958a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 < 2)
6057, 59ltned 11426 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 1 ≠ 2)
6160necomd 3002 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ≠ 1)
6244, 46, 48, 56, 61relogbcld 41929 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 logb 𝑁) ∈ ℝ)
63 5nn0 12573 . . . . . . . . . . . . . . . . . . . . 21 5 ∈ ℕ0
6463a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 5 ∈ ℕ0)
6562, 64reexpcld 14213 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
6665ceilcld 13894 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
6766zred 12747 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)
6847, 67eqeltrd 2844 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ)
69 9re 12392 . . . . . . . . . . . . . . . . . 18 9 ∈ ℝ
7069a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 9 ∈ ℝ)
71 9pos 12406 . . . . . . . . . . . . . . . . . 18 0 < 9
7271a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 9)
7348, 553lexlogpow5ineq4 42013 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 9 < ((2 logb 𝑁)↑5))
7465ceilged 13897 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
7570, 65, 67, 73, 74ltletrd 11450 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 < (⌈‘((2 logb 𝑁)↑5)))
7675, 47breqtrrd 5194 . . . . . . . . . . . . . . . . 17 (𝜑 → 9 < 𝐵)
7749, 70, 68, 72, 76lttrd 11451 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝐵)
7844, 46, 68, 77, 61relogbcld 41929 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 𝐵) ∈ ℝ)
7978flcld 13849 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
8044recnd 11318 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ ℂ)
8149, 46gtned 11425 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ≠ 0)
82 logb1 26830 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
8380, 81, 61, 82syl3anc 1371 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 1) = 0)
8483eqcomd 2746 . . . . . . . . . . . . . . . 16 (𝜑 → 0 = (2 logb 1))
85 2z 12675 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
8685a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℤ)
8744leidd 11856 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≤ 2)
88 0lt1 11812 . . . . . . . . . . . . . . . . . 18 0 < 1
8988a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 1)
90 1lt9 12499 . . . . . . . . . . . . . . . . . . . 20 1 < 9
9190a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 < 9)
9257, 70, 91ltled 11438 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ≤ 9)
9370, 68, 76ltled 11438 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 ≤ 𝐵)
9457, 70, 68, 92, 93letrd 11447 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 𝐵)
9586, 87, 57, 89, 68, 77, 94logblebd 41932 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 1) ≤ (2 logb 𝐵))
9684, 95eqbrtrd 5188 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (2 logb 𝐵))
97 0zd 12651 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ ℤ)
98 flge 13856 . . . . . . . . . . . . . . . 16 (((2 logb 𝐵) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
9978, 97, 98syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
10096, 99mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (⌊‘(2 logb 𝐵)))
10179, 100jca 511 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
102 elnn0z 12652 . . . . . . . . . . . . 13 ((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔ ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
103101, 102sylibr 234 . . . . . . . . . . . 12 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
10442, 103zexpcld 14138 . . . . . . . . . . 11 (𝜑 → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℤ)
105 fzfid 14024 . . . . . . . . . . . 12 (𝜑 → (1...(⌊‘((2 logb 𝑁)↑2))) ∈ Fin)
10642adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℤ)
107 elfznn 13613 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ ℕ)
108107adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ)
109108nnnn0d 12613 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0)
110106, 109zexpcld 14138 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℤ)
111 1zzd 12674 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℤ)
112110, 111zsubcld 12752 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℤ)
113105, 112fprodzcl 16002 . . . . . . . . . . 11 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℤ)
114 dvdsmultr1 16344 . . . . . . . . . . 11 ((𝑅 ∈ ℤ ∧ (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℤ ∧ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℤ) → (𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))) → 𝑅 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))))
11540, 104, 113, 114syl3anc 1371 . . . . . . . . . 10 (𝜑 → (𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))) → 𝑅 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))))
116115imp 406 . . . . . . . . 9 ((𝜑𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵)))) → 𝑅 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
1173a1i 11 . . . . . . . . . . 11 (𝜑𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
118117breq2d 5178 . . . . . . . . . 10 (𝜑 → (𝑅𝐴𝑅 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))))
119118adantr 480 . . . . . . . . 9 ((𝜑𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵)))) → (𝑅𝐴𝑅 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))))
120116, 119mpbird 257 . . . . . . . 8 ((𝜑𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵)))) → 𝑅𝐴)
121120ex 412 . . . . . . 7 (𝜑 → (𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))) → 𝑅𝐴))
122121con3d 152 . . . . . 6 (𝜑 → (¬ 𝑅𝐴 → ¬ 𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵)))))
12337, 122mpd 15 . . . . 5 (𝜑 → ¬ 𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))))
124123adantr 480 . . . 4 ((𝜑 ∧ ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁)) → ¬ 𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))))
12512, 124pm2.65da 816 . . 3 (𝜑 → ¬ ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁))
126 ianor 982 . . . . . . . 8 (¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ (¬ 𝑝𝑅 ∨ ¬ ¬ 𝑝𝑁))
127 notnotb 315 . . . . . . . . . 10 (𝑝𝑁 ↔ ¬ ¬ 𝑝𝑁)
128127orbi2i 911 . . . . . . . . 9 ((¬ 𝑝𝑅𝑝𝑁) ↔ (¬ 𝑝𝑅 ∨ ¬ ¬ 𝑝𝑁))
129128bicomi 224 . . . . . . . 8 ((¬ 𝑝𝑅 ∨ ¬ ¬ 𝑝𝑁) ↔ (¬ 𝑝𝑅𝑝𝑁))
130126, 129bitri 275 . . . . . . 7 (¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ (¬ 𝑝𝑅𝑝𝑁))
131 df-or 847 . . . . . . 7 ((¬ 𝑝𝑅𝑝𝑁) ↔ (¬ ¬ 𝑝𝑅𝑝𝑁))
132130, 131bitri 275 . . . . . 6 (¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ (¬ ¬ 𝑝𝑅𝑝𝑁))
133 notnotb 315 . . . . . . . 8 (𝑝𝑅 ↔ ¬ ¬ 𝑝𝑅)
134133imbi1i 349 . . . . . . 7 ((𝑝𝑅𝑝𝑁) ↔ (¬ ¬ 𝑝𝑅𝑝𝑁))
135134bicomi 224 . . . . . 6 ((¬ ¬ 𝑝𝑅𝑝𝑁) ↔ (𝑝𝑅𝑝𝑁))
136132, 135bitri 275 . . . . 5 (¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ (𝑝𝑅𝑝𝑁))
137136ralbii 3099 . . . 4 (∀𝑝 ∈ ℙ ¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁))
138137notbii 320 . . 3 (¬ ∀𝑝 ∈ ℙ ¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁))
139125, 138sylibr 234 . 2 (𝜑 → ¬ ∀𝑝 ∈ ℙ ¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁))
140 ralnex 3078 . . . 4 (∀𝑝 ∈ ℙ ¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ ¬ ∃𝑝 ∈ ℙ (𝑝𝑅 ∧ ¬ 𝑝𝑁))
141140con2bii 357 . . 3 (∃𝑝 ∈ ℙ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ ¬ ∀𝑝 ∈ ℙ ¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁))
142141bicomi 224 . 2 (¬ ∀𝑝 ∈ ℙ ¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ ∃𝑝 ∈ ℙ (𝑝𝑅 ∧ ¬ 𝑝𝑁))
143139, 142sylib 218 1 (𝜑 → ∃𝑝 ∈ ℙ (𝑝𝑅 ∧ ¬ 𝑝𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  wss 3976  c0 4352   class class class wbr 5166   Or wor 5606  cfv 6573  (class class class)co 7448  Fincfn 9003  infcinf 9510  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189   < clt 11324  cle 11325  cmin 11520  cn 12293  2c2 12348  3c3 12349  5c5 12351  9c9 12355  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  cfl 13841  cceil 13842  cexp 14112  cprod 15951  cdvds 16302  cprime 16718   logb clogb 26825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-ceil 13844  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-prod 15952  df-ef 16115  df-e 16116  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-lcm 16637  df-lcmf 16638  df-prm 16719  df-pc 16884  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724  df-limc 25921  df-dv 25922  df-log 26616  df-cxp 26617  df-logb 26826
This theorem is referenced by:  aks4d1p8  42044
  Copyright terms: Public domain W3C validator