Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p7 Structured version   Visualization version   GIF version

Theorem aks4d1p7 42064
Description: Technical step in AKS lemma 4.1 (Contributed by metakunt, 31-Oct-2024.)
Hypotheses
Ref Expression
aks4d1p7.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p7.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p7.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p7.4 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
Assertion
Ref Expression
aks4d1p7 (𝜑 → ∃𝑝 ∈ ℙ (𝑝𝑅 ∧ ¬ 𝑝𝑁))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑘,𝑁,𝑝   𝑅,𝑘,𝑝   𝑅,𝑟   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑟,𝑝)   𝐴(𝑘,𝑝)   𝐵(𝑘,𝑝)   𝑁(𝑟)

Proof of Theorem aks4d1p7
Dummy variables 𝑜 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aks4d1p7.1 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘3))
21adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁)) → 𝑁 ∈ (ℤ‘3))
3 aks4d1p7.2 . . . . 5 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
4 aks4d1p7.3 . . . . 5 𝐵 = (⌈‘((2 logb 𝑁)↑5))
5 aks4d1p7.4 . . . . 5 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
6 breq1 5105 . . . . . . . . 9 (𝑝 = 𝑞 → (𝑝𝑅𝑞𝑅))
7 breq1 5105 . . . . . . . . 9 (𝑝 = 𝑞 → (𝑝𝑁𝑞𝑁))
86, 7imbi12d 344 . . . . . . . 8 (𝑝 = 𝑞 → ((𝑝𝑅𝑝𝑁) ↔ (𝑞𝑅𝑞𝑁)))
98cbvralvw 3213 . . . . . . 7 (∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁) ↔ ∀𝑞 ∈ ℙ (𝑞𝑅𝑞𝑁))
109biimpi 216 . . . . . 6 (∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁) → ∀𝑞 ∈ ℙ (𝑞𝑅𝑞𝑁))
1110adantl 481 . . . . 5 ((𝜑 ∧ ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁)) → ∀𝑞 ∈ ℙ (𝑞𝑅𝑞𝑁))
122, 3, 4, 5, 11aks4d1p7d1 42063 . . . 4 ((𝜑 ∧ ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁)) → 𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))))
135a1i 11 . . . . . . . . 9 (𝜑𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ))
14 ltso 11230 . . . . . . . . . . 11 < Or ℝ
1514a1i 11 . . . . . . . . . 10 (𝜑 → < Or ℝ)
16 fzfid 13914 . . . . . . . . . . . 12 (𝜑 → (1...𝐵) ∈ Fin)
17 ssrab2 4039 . . . . . . . . . . . . 13 {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ (1...𝐵)
1817a1i 11 . . . . . . . . . . . 12 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ (1...𝐵))
1916, 18ssfid 9188 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin)
201, 3, 4aks4d1p3 42059 . . . . . . . . . . . 12 (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
21 rabn0 4348 . . . . . . . . . . . 12 ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅ ↔ ∃𝑟 ∈ (1...𝐵) ¬ 𝑟𝐴)
2220, 21sylibr 234 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅)
23 elfznn 13490 . . . . . . . . . . . . . . . 16 (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℕ)
2423adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℕ)
2524nnred 12177 . . . . . . . . . . . . . 14 ((𝜑𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℝ)
2625ex 412 . . . . . . . . . . . . 13 (𝜑 → (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℝ))
2726ssrdv 3949 . . . . . . . . . . . 12 (𝜑 → (1...𝐵) ⊆ ℝ)
2818, 27sstrd 3954 . . . . . . . . . . 11 (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)
2919, 22, 283jca 1128 . . . . . . . . . 10 (𝜑 → ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ))
30 fiinfcl 9430 . . . . . . . . . 10 (( < Or ℝ ∧ ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ∈ Fin ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ≠ ∅ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ⊆ ℝ)) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴})
3115, 29, 30syl2anc 584 . . . . . . . . 9 (𝜑 → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < ) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴})
3213, 31eqeltrd 2828 . . . . . . . 8 (𝜑𝑅 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴})
33 breq1 5105 . . . . . . . . . 10 (𝑟 = 𝑅 → (𝑟𝐴𝑅𝐴))
3433notbid 318 . . . . . . . . 9 (𝑟 = 𝑅 → (¬ 𝑟𝐴 ↔ ¬ 𝑅𝐴))
3534elrab 3656 . . . . . . . 8 (𝑅 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴} ↔ (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
3632, 35sylib 218 . . . . . . 7 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
3736simprd 495 . . . . . 6 (𝜑 → ¬ 𝑅𝐴)
381, 3, 4, 5aks4d1p4 42060 . . . . . . . . . . . . 13 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
3938simpld 494 . . . . . . . . . . . 12 (𝜑𝑅 ∈ (1...𝐵))
4039elfzelzd 13462 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℤ)
41 eluzelz 12779 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
421, 41syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
43 2re 12236 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
4443a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 ∈ ℝ)
45 2pos 12265 . . . . . . . . . . . . . . . . 17 0 < 2
4645a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 2)
474a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 = (⌈‘((2 logb 𝑁)↑5)))
4842zred 12614 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ ℝ)
49 0red 11153 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 ∈ ℝ)
50 3re 12242 . . . . . . . . . . . . . . . . . . . . . . 23 3 ∈ ℝ
5150a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 3 ∈ ℝ)
52 3pos 12267 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 3
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 0 < 3)
54 eluzle 12782 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
551, 54syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 3 ≤ 𝑁)
5649, 51, 48, 53, 55ltletrd 11310 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 < 𝑁)
57 1red 11151 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 ∈ ℝ)
58 1lt2 12328 . . . . . . . . . . . . . . . . . . . . . . . 24 1 < 2
5958a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 < 2)
6057, 59ltned 11286 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 1 ≠ 2)
6160necomd 2980 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ≠ 1)
6244, 46, 48, 56, 61relogbcld 41954 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 logb 𝑁) ∈ ℝ)
63 5nn0 12438 . . . . . . . . . . . . . . . . . . . . 21 5 ∈ ℕ0
6463a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 5 ∈ ℕ0)
6562, 64reexpcld 14104 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((2 logb 𝑁)↑5) ∈ ℝ)
6665ceilcld 13781 . . . . . . . . . . . . . . . . . 18 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℤ)
6766zred 12614 . . . . . . . . . . . . . . . . 17 (𝜑 → (⌈‘((2 logb 𝑁)↑5)) ∈ ℝ)
6847, 67eqeltrd 2828 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ)
69 9re 12261 . . . . . . . . . . . . . . . . . 18 9 ∈ ℝ
7069a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 9 ∈ ℝ)
71 9pos 12275 . . . . . . . . . . . . . . . . . 18 0 < 9
7271a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 9)
7348, 553lexlogpow5ineq4 42037 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 9 < ((2 logb 𝑁)↑5))
7465ceilged 13784 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((2 logb 𝑁)↑5) ≤ (⌈‘((2 logb 𝑁)↑5)))
7570, 65, 67, 73, 74ltletrd 11310 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 < (⌈‘((2 logb 𝑁)↑5)))
7675, 47breqtrrd 5130 . . . . . . . . . . . . . . . . 17 (𝜑 → 9 < 𝐵)
7749, 70, 68, 72, 76lttrd 11311 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝐵)
7844, 46, 68, 77, 61relogbcld 41954 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 𝐵) ∈ ℝ)
7978flcld 13736 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
8044recnd 11178 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ ℂ)
8149, 46gtned 11285 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ≠ 0)
82 logb1 26712 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
8380, 81, 61, 82syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 logb 1) = 0)
8483eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝜑 → 0 = (2 logb 1))
85 2z 12541 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
8685a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℤ)
8744leidd 11720 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≤ 2)
88 0lt1 11676 . . . . . . . . . . . . . . . . . 18 0 < 1
8988a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 1)
90 1lt9 12363 . . . . . . . . . . . . . . . . . . . 20 1 < 9
9190a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 < 9)
9257, 70, 91ltled 11298 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ≤ 9)
9370, 68, 76ltled 11298 . . . . . . . . . . . . . . . . . 18 (𝜑 → 9 ≤ 𝐵)
9457, 70, 68, 92, 93letrd 11307 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 𝐵)
9586, 87, 57, 89, 68, 77, 94logblebd 41957 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 1) ≤ (2 logb 𝐵))
9684, 95eqbrtrd 5124 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (2 logb 𝐵))
97 0zd 12517 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ ℤ)
98 flge 13743 . . . . . . . . . . . . . . . 16 (((2 logb 𝐵) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
9978, 97, 98syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
10096, 99mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (⌊‘(2 logb 𝐵)))
10179, 100jca 511 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
102 elnn0z 12518 . . . . . . . . . . . . 13 ((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔ ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
103101, 102sylibr 234 . . . . . . . . . . . 12 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
10442, 103zexpcld 14028 . . . . . . . . . . 11 (𝜑 → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℤ)
105 fzfid 13914 . . . . . . . . . . . 12 (𝜑 → (1...(⌊‘((2 logb 𝑁)↑2))) ∈ Fin)
10642adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℤ)
107 elfznn 13490 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ ℕ)
108107adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ)
109108nnnn0d 12479 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0)
110106, 109zexpcld 14028 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℤ)
111 1zzd 12540 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℤ)
112110, 111zsubcld 12619 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℤ)
113105, 112fprodzcl 15896 . . . . . . . . . . 11 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℤ)
114 dvdsmultr1 16242 . . . . . . . . . . 11 ((𝑅 ∈ ℤ ∧ (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℤ ∧ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℤ) → (𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))) → 𝑅 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))))
11540, 104, 113, 114syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))) → 𝑅 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))))
116115imp 406 . . . . . . . . 9 ((𝜑𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵)))) → 𝑅 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
1173a1i 11 . . . . . . . . . . 11 (𝜑𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
118117breq2d 5114 . . . . . . . . . 10 (𝜑 → (𝑅𝐴𝑅 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))))
119118adantr 480 . . . . . . . . 9 ((𝜑𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵)))) → (𝑅𝐴𝑅 ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))))
120116, 119mpbird 257 . . . . . . . 8 ((𝜑𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵)))) → 𝑅𝐴)
121120ex 412 . . . . . . 7 (𝜑 → (𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))) → 𝑅𝐴))
122121con3d 152 . . . . . 6 (𝜑 → (¬ 𝑅𝐴 → ¬ 𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵)))))
12337, 122mpd 15 . . . . 5 (𝜑 → ¬ 𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))))
124123adantr 480 . . . 4 ((𝜑 ∧ ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁)) → ¬ 𝑅 ∥ (𝑁↑(⌊‘(2 logb 𝐵))))
12512, 124pm2.65da 816 . . 3 (𝜑 → ¬ ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁))
126 ianor 983 . . . . . . . 8 (¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ (¬ 𝑝𝑅 ∨ ¬ ¬ 𝑝𝑁))
127 notnotb 315 . . . . . . . . . 10 (𝑝𝑁 ↔ ¬ ¬ 𝑝𝑁)
128127orbi2i 912 . . . . . . . . 9 ((¬ 𝑝𝑅𝑝𝑁) ↔ (¬ 𝑝𝑅 ∨ ¬ ¬ 𝑝𝑁))
129128bicomi 224 . . . . . . . 8 ((¬ 𝑝𝑅 ∨ ¬ ¬ 𝑝𝑁) ↔ (¬ 𝑝𝑅𝑝𝑁))
130126, 129bitri 275 . . . . . . 7 (¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ (¬ 𝑝𝑅𝑝𝑁))
131 df-or 848 . . . . . . 7 ((¬ 𝑝𝑅𝑝𝑁) ↔ (¬ ¬ 𝑝𝑅𝑝𝑁))
132130, 131bitri 275 . . . . . 6 (¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ (¬ ¬ 𝑝𝑅𝑝𝑁))
133 notnotb 315 . . . . . . . 8 (𝑝𝑅 ↔ ¬ ¬ 𝑝𝑅)
134133imbi1i 349 . . . . . . 7 ((𝑝𝑅𝑝𝑁) ↔ (¬ ¬ 𝑝𝑅𝑝𝑁))
135134bicomi 224 . . . . . 6 ((¬ ¬ 𝑝𝑅𝑝𝑁) ↔ (𝑝𝑅𝑝𝑁))
136132, 135bitri 275 . . . . 5 (¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ (𝑝𝑅𝑝𝑁))
137136ralbii 3075 . . . 4 (∀𝑝 ∈ ℙ ¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁))
138137notbii 320 . . 3 (¬ ∀𝑝 ∈ ℙ ¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝𝑅𝑝𝑁))
139125, 138sylibr 234 . 2 (𝜑 → ¬ ∀𝑝 ∈ ℙ ¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁))
140 ralnex 3055 . . . 4 (∀𝑝 ∈ ℙ ¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ ¬ ∃𝑝 ∈ ℙ (𝑝𝑅 ∧ ¬ 𝑝𝑁))
141140con2bii 357 . . 3 (∃𝑝 ∈ ℙ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ ¬ ∀𝑝 ∈ ℙ ¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁))
142141bicomi 224 . 2 (¬ ∀𝑝 ∈ ℙ ¬ (𝑝𝑅 ∧ ¬ 𝑝𝑁) ↔ ∃𝑝 ∈ ℙ (𝑝𝑅 ∧ ¬ 𝑝𝑁))
143139, 142sylib 218 1 (𝜑 → ∃𝑝 ∈ ℙ (𝑝𝑅 ∧ ¬ 𝑝𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  wss 3911  c0 4292   class class class wbr 5102   Or wor 5538  cfv 6499  (class class class)co 7369  Fincfn 8895  infcinf 9368  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049   < clt 11184  cle 11185  cmin 11381  cn 12162  2c2 12217  3c3 12218  5c5 12220  9c9 12224  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  cfl 13728  cceil 13729  cexp 14002  cprod 15845  cdvds 16198  cprime 16617   logb clogb 26707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-symdif 4212  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-ceil 13731  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-prod 15846  df-ef 16009  df-e 16010  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-lcm 16536  df-lcmf 16537  df-prm 16618  df-pc 16784  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-cmp 23307  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-ovol 25398  df-vol 25399  df-mbf 25553  df-itg1 25554  df-itg2 25555  df-ibl 25556  df-itg 25557  df-0p 25604  df-limc 25800  df-dv 25801  df-log 26498  df-cxp 26499  df-logb 26708
This theorem is referenced by:  aks4d1p8  42068
  Copyright terms: Public domain W3C validator