Step | Hyp | Ref
| Expression |
1 | | aks4d1p7.1 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘3)) |
2 | 1 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁)) → 𝑁 ∈
(ℤ≥‘3)) |
3 | | aks4d1p7.2 |
. . . . 5
⊢ 𝐴 = ((𝑁↑(⌊‘(2 logb
𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1)) |
4 | | aks4d1p7.3 |
. . . . 5
⊢ 𝐵 = (⌈‘((2
logb 𝑁)↑5)) |
5 | | aks4d1p7.4 |
. . . . 5
⊢ 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) |
6 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑝 = 𝑞 → (𝑝 ∥ 𝑅 ↔ 𝑞 ∥ 𝑅)) |
7 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑝 = 𝑞 → (𝑝 ∥ 𝑁 ↔ 𝑞 ∥ 𝑁)) |
8 | 6, 7 | imbi12d 348 |
. . . . . . . 8
⊢ (𝑝 = 𝑞 → ((𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁) ↔ (𝑞 ∥ 𝑅 → 𝑞 ∥ 𝑁))) |
9 | 8 | cbvralvw 3373 |
. . . . . . 7
⊢
(∀𝑝 ∈
ℙ (𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁) ↔ ∀𝑞 ∈ ℙ (𝑞 ∥ 𝑅 → 𝑞 ∥ 𝑁)) |
10 | 9 | biimpi 219 |
. . . . . 6
⊢
(∀𝑝 ∈
ℙ (𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁) → ∀𝑞 ∈ ℙ (𝑞 ∥ 𝑅 → 𝑞 ∥ 𝑁)) |
11 | 10 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁)) → ∀𝑞 ∈ ℙ (𝑞 ∥ 𝑅 → 𝑞 ∥ 𝑁)) |
12 | 2, 3, 4, 5, 11 | aks4d1p7d1 39996 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁)) → 𝑅 ∥ (𝑁↑(⌊‘(2 logb
𝐵)))) |
13 | 5 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < )) |
14 | | ltso 10961 |
. . . . . . . . . . 11
⊢ < Or
ℝ |
15 | 14 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → < Or
ℝ) |
16 | | fzfid 13596 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1...𝐵) ∈ Fin) |
17 | | ssrab2 4010 |
. . . . . . . . . . . . 13
⊢ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ⊆ (1...𝐵) |
18 | 17 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ⊆ (1...𝐵)) |
19 | 16, 18 | ssfid 8946 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ∈ Fin) |
20 | 1, 3, 4 | aks4d1p3 39992 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∃𝑟 ∈ (1...𝐵) ¬ 𝑟 ∥ 𝐴) |
21 | | rabn0 4317 |
. . . . . . . . . . . 12
⊢ ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ≠ ∅ ↔ ∃𝑟 ∈ (1...𝐵) ¬ 𝑟 ∥ 𝐴) |
22 | 20, 21 | sylibr 237 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ≠ ∅) |
23 | | elfznn 13189 |
. . . . . . . . . . . . . . . 16
⊢ (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℕ) |
24 | 23 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℕ) |
25 | 24 | nnred 11893 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑜 ∈ (1...𝐵)) → 𝑜 ∈ ℝ) |
26 | 25 | ex 416 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑜 ∈ (1...𝐵) → 𝑜 ∈ ℝ)) |
27 | 26 | ssrdv 3924 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1...𝐵) ⊆ ℝ) |
28 | 18, 27 | sstrd 3928 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ⊆ ℝ) |
29 | 19, 22, 28 | 3jca 1130 |
. . . . . . . . . 10
⊢ (𝜑 → ({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ∈ Fin ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ≠ ∅ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ⊆ ℝ)) |
30 | | fiinfcl 9165 |
. . . . . . . . . 10
⊢ (( <
Or ℝ ∧ ({𝑟 ∈
(1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ∈ Fin ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ≠ ∅ ∧ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ⊆ ℝ)) → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}) |
31 | 15, 29, 30 | syl2anc 587 |
. . . . . . . . 9
⊢ (𝜑 → inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}, ℝ, < ) ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}) |
32 | 13, 31 | eqeltrd 2840 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴}) |
33 | | breq1 5073 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (𝑟 ∥ 𝐴 ↔ 𝑅 ∥ 𝐴)) |
34 | 33 | notbid 321 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (¬ 𝑟 ∥ 𝐴 ↔ ¬ 𝑅 ∥ 𝐴)) |
35 | 34 | elrab 3618 |
. . . . . . . 8
⊢ (𝑅 ∈ {𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟 ∥ 𝐴} ↔ (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅 ∥ 𝐴)) |
36 | 32, 35 | sylib 221 |
. . . . . . 7
⊢ (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅 ∥ 𝐴)) |
37 | 36 | simprd 499 |
. . . . . 6
⊢ (𝜑 → ¬ 𝑅 ∥ 𝐴) |
38 | 1, 3, 4, 5 | aks4d1p4 39993 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅 ∥ 𝐴)) |
39 | 38 | simpld 498 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ (1...𝐵)) |
40 | 39 | elfzelzd 13161 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ ℤ) |
41 | | eluzelz 12496 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℤ) |
42 | 1, 41 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℤ) |
43 | | 2re 11952 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℝ |
44 | 43 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 2 ∈
ℝ) |
45 | | 2pos 11981 |
. . . . . . . . . . . . . . . . 17
⊢ 0 <
2 |
46 | 45 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 < 2) |
47 | 4 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 = (⌈‘((2 logb 𝑁)↑5))) |
48 | 42 | zred 12330 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑁 ∈ ℝ) |
49 | | 0red 10884 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 0 ∈
ℝ) |
50 | | 3re 11958 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 3 ∈
ℝ |
51 | 50 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 3 ∈
ℝ) |
52 | | 3pos 11983 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 <
3 |
53 | 52 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 0 < 3) |
54 | | eluzle 12499 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈
(ℤ≥‘3) → 3 ≤ 𝑁) |
55 | 1, 54 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 3 ≤ 𝑁) |
56 | 49, 51, 48, 53, 55 | ltletrd 11040 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 0 < 𝑁) |
57 | | 1red 10882 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 1 ∈
ℝ) |
58 | | 1lt2 12049 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 <
2 |
59 | 58 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 1 < 2) |
60 | 57, 59 | ltned 11016 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 1 ≠ 2) |
61 | 60 | necomd 2999 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 2 ≠ 1) |
62 | 44, 46, 48, 56, 61 | relogbcld 39887 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (2 logb 𝑁) ∈
ℝ) |
63 | | 5nn0 12158 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 5 ∈
ℕ0 |
64 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 5 ∈
ℕ0) |
65 | 62, 64 | reexpcld 13784 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((2 logb 𝑁)↑5) ∈
ℝ) |
66 | 65 | ceilcld 13466 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (⌈‘((2
logb 𝑁)↑5))
∈ ℤ) |
67 | 66 | zred 12330 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (⌈‘((2
logb 𝑁)↑5))
∈ ℝ) |
68 | 47, 67 | eqeltrd 2840 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐵 ∈ ℝ) |
69 | | 9re 11977 |
. . . . . . . . . . . . . . . . . 18
⊢ 9 ∈
ℝ |
70 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 9 ∈
ℝ) |
71 | | 9pos 11991 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 <
9 |
72 | 71 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 < 9) |
73 | 48, 55 | 3lexlogpow5ineq4 39971 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 9 < ((2 logb
𝑁)↑5)) |
74 | 65 | ceilged 13469 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((2 logb 𝑁)↑5) ≤
(⌈‘((2 logb 𝑁)↑5))) |
75 | 70, 65, 67, 73, 74 | ltletrd 11040 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 9 < (⌈‘((2
logb 𝑁)↑5))) |
76 | 75, 47 | breqtrrd 5098 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 9 < 𝐵) |
77 | 49, 70, 68, 72, 76 | lttrd 11041 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 < 𝐵) |
78 | 44, 46, 68, 77, 61 | relogbcld 39887 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (2 logb 𝐵) ∈
ℝ) |
79 | 78 | flcld 13421 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (⌊‘(2
logb 𝐵)) ∈
ℤ) |
80 | 44 | recnd 10909 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 2 ∈
ℂ) |
81 | 49, 46 | gtned 11015 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 2 ≠ 0) |
82 | | logb1 25799 |
. . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) =
0) |
83 | 80, 81, 61, 82 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (2 logb 1) =
0) |
84 | 83 | eqcomd 2745 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 = (2 logb
1)) |
85 | | 2z 12257 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℤ |
86 | 85 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 2 ∈
ℤ) |
87 | 44 | leidd 11446 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 2 ≤ 2) |
88 | | 0lt1 11402 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 <
1 |
89 | 88 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 < 1) |
90 | | 1lt9 12084 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 <
9 |
91 | 90 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 1 < 9) |
92 | 57, 70, 91 | ltled 11028 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 1 ≤ 9) |
93 | 70, 68, 76 | ltled 11028 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 9 ≤ 𝐵) |
94 | 57, 70, 68, 92, 93 | letrd 11037 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 1 ≤ 𝐵) |
95 | 86, 87, 57, 89, 68, 77, 94 | logblebd 39890 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2 logb 1) ≤
(2 logb 𝐵)) |
96 | 84, 95 | eqbrtrd 5092 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ≤ (2 logb
𝐵)) |
97 | | 0zd 12236 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ∈
ℤ) |
98 | | flge 13428 |
. . . . . . . . . . . . . . . 16
⊢ (((2
logb 𝐵) ∈
ℝ ∧ 0 ∈ ℤ) → (0 ≤ (2 logb 𝐵) ↔ 0 ≤
(⌊‘(2 logb 𝐵)))) |
99 | 78, 97, 98 | syl2anc 587 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0 ≤ (2 logb
𝐵) ↔ 0 ≤
(⌊‘(2 logb 𝐵)))) |
100 | 96, 99 | mpbid 235 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ≤ (⌊‘(2
logb 𝐵))) |
101 | 79, 100 | jca 515 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((⌊‘(2
logb 𝐵)) ∈
ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵)))) |
102 | | elnn0z 12237 |
. . . . . . . . . . . . 13
⊢
((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔
((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤
(⌊‘(2 logb 𝐵)))) |
103 | 101, 102 | sylibr 237 |
. . . . . . . . . . . 12
⊢ (𝜑 → (⌊‘(2
logb 𝐵)) ∈
ℕ0) |
104 | 42, 103 | zexpcld 13711 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁↑(⌊‘(2 logb
𝐵))) ∈
ℤ) |
105 | | fzfid 13596 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1...(⌊‘((2
logb 𝑁)↑2))) ∈ Fin) |
106 | 42 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 𝑁 ∈ ℤ) |
107 | | elfznn 13189 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2))) → 𝑘 ∈ ℕ) |
108 | 107 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 𝑘 ∈ ℕ) |
109 | 108 | nnnn0d 12198 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0) |
110 | 106, 109 | zexpcld 13711 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → (𝑁↑𝑘) ∈ ℤ) |
111 | | 1zzd 12256 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → 1 ∈
ℤ) |
112 | 110, 111 | zsubcld 12335 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))) → ((𝑁↑𝑘) − 1) ∈ ℤ) |
113 | 105, 112 | fprodzcl 15567 |
. . . . . . . . . . 11
⊢ (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1) ∈ ℤ) |
114 | | dvdsmultr1 15908 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℤ ∧ (𝑁↑(⌊‘(2
logb 𝐵))) ∈
ℤ ∧ ∏𝑘
∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁↑𝑘) − 1) ∈ ℤ) → (𝑅 ∥ (𝑁↑(⌊‘(2 logb
𝐵))) → 𝑅 ∥ ((𝑁↑(⌊‘(2 logb
𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1)))) |
115 | 40, 104, 113, 114 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ∥ (𝑁↑(⌊‘(2 logb
𝐵))) → 𝑅 ∥ ((𝑁↑(⌊‘(2 logb
𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1)))) |
116 | 115 | imp 410 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑅 ∥ (𝑁↑(⌊‘(2 logb
𝐵)))) → 𝑅 ∥ ((𝑁↑(⌊‘(2 logb
𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1))) |
117 | 3 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 = ((𝑁↑(⌊‘(2 logb
𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1))) |
118 | 117 | breq2d 5082 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ∥ 𝐴 ↔ 𝑅 ∥ ((𝑁↑(⌊‘(2 logb
𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1)))) |
119 | 118 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑅 ∥ (𝑁↑(⌊‘(2 logb
𝐵)))) → (𝑅 ∥ 𝐴 ↔ 𝑅 ∥ ((𝑁↑(⌊‘(2 logb
𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2
logb 𝑁)↑2)))((𝑁↑𝑘) − 1)))) |
120 | 116, 119 | mpbird 260 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑅 ∥ (𝑁↑(⌊‘(2 logb
𝐵)))) → 𝑅 ∥ 𝐴) |
121 | 120 | ex 416 |
. . . . . . 7
⊢ (𝜑 → (𝑅 ∥ (𝑁↑(⌊‘(2 logb
𝐵))) → 𝑅 ∥ 𝐴)) |
122 | 121 | con3d 155 |
. . . . . 6
⊢ (𝜑 → (¬ 𝑅 ∥ 𝐴 → ¬ 𝑅 ∥ (𝑁↑(⌊‘(2 logb
𝐵))))) |
123 | 37, 122 | mpd 15 |
. . . . 5
⊢ (𝜑 → ¬ 𝑅 ∥ (𝑁↑(⌊‘(2 logb
𝐵)))) |
124 | 123 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑝 ∈ ℙ (𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁)) → ¬ 𝑅 ∥ (𝑁↑(⌊‘(2 logb
𝐵)))) |
125 | 12, 124 | pm2.65da 817 |
. . 3
⊢ (𝜑 → ¬ ∀𝑝 ∈ ℙ (𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁)) |
126 | | ianor 982 |
. . . . . . . 8
⊢ (¬
(𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁) ↔ (¬ 𝑝 ∥ 𝑅 ∨ ¬ ¬ 𝑝 ∥ 𝑁)) |
127 | | notnotb 318 |
. . . . . . . . . 10
⊢ (𝑝 ∥ 𝑁 ↔ ¬ ¬ 𝑝 ∥ 𝑁) |
128 | 127 | orbi2i 913 |
. . . . . . . . 9
⊢ ((¬
𝑝 ∥ 𝑅 ∨ 𝑝 ∥ 𝑁) ↔ (¬ 𝑝 ∥ 𝑅 ∨ ¬ ¬ 𝑝 ∥ 𝑁)) |
129 | 128 | bicomi 227 |
. . . . . . . 8
⊢ ((¬
𝑝 ∥ 𝑅 ∨ ¬ ¬ 𝑝 ∥ 𝑁) ↔ (¬ 𝑝 ∥ 𝑅 ∨ 𝑝 ∥ 𝑁)) |
130 | 126, 129 | bitri 278 |
. . . . . . 7
⊢ (¬
(𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁) ↔ (¬ 𝑝 ∥ 𝑅 ∨ 𝑝 ∥ 𝑁)) |
131 | | df-or 848 |
. . . . . . 7
⊢ ((¬
𝑝 ∥ 𝑅 ∨ 𝑝 ∥ 𝑁) ↔ (¬ ¬ 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁)) |
132 | 130, 131 | bitri 278 |
. . . . . 6
⊢ (¬
(𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁) ↔ (¬ ¬ 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁)) |
133 | | notnotb 318 |
. . . . . . . 8
⊢ (𝑝 ∥ 𝑅 ↔ ¬ ¬ 𝑝 ∥ 𝑅) |
134 | 133 | imbi1i 353 |
. . . . . . 7
⊢ ((𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁) ↔ (¬ ¬ 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁)) |
135 | 134 | bicomi 227 |
. . . . . 6
⊢ ((¬
¬ 𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁) ↔ (𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁)) |
136 | 132, 135 | bitri 278 |
. . . . 5
⊢ (¬
(𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁) ↔ (𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁)) |
137 | 136 | ralbii 3091 |
. . . 4
⊢
(∀𝑝 ∈
ℙ ¬ (𝑝 ∥
𝑅 ∧ ¬ 𝑝 ∥ 𝑁) ↔ ∀𝑝 ∈ ℙ (𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁)) |
138 | 137 | notbii 323 |
. . 3
⊢ (¬
∀𝑝 ∈ ℙ
¬ (𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁) ↔ ¬ ∀𝑝 ∈ ℙ (𝑝 ∥ 𝑅 → 𝑝 ∥ 𝑁)) |
139 | 125, 138 | sylibr 237 |
. 2
⊢ (𝜑 → ¬ ∀𝑝 ∈ ℙ ¬ (𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁)) |
140 | | ralnex 3164 |
. . . 4
⊢
(∀𝑝 ∈
ℙ ¬ (𝑝 ∥
𝑅 ∧ ¬ 𝑝 ∥ 𝑁) ↔ ¬ ∃𝑝 ∈ ℙ (𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁)) |
141 | 140 | con2bii 361 |
. . 3
⊢
(∃𝑝 ∈
ℙ (𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁) ↔ ¬ ∀𝑝 ∈ ℙ ¬ (𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁)) |
142 | 141 | bicomi 227 |
. 2
⊢ (¬
∀𝑝 ∈ ℙ
¬ (𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁) ↔ ∃𝑝 ∈ ℙ (𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁)) |
143 | 139, 142 | sylib 221 |
1
⊢ (𝜑 → ∃𝑝 ∈ ℙ (𝑝 ∥ 𝑅 ∧ ¬ 𝑝 ∥ 𝑁)) |