MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrcls0 Structured version   Visualization version   GIF version

Theorem ntrcls0 21791
Description: A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrcls0 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) = ∅)

Proof of Theorem ntrcls0
StepHypRef Expression
1 simpl 486 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝐽 ∈ Top)
2 clscld.1 . . . . . 6 𝑋 = 𝐽
32clsss3 21774 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
42sscls 21771 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
52ntrss 21770 . . . . 5 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑆) ⊆ 𝑋𝑆 ⊆ ((cls‘𝐽)‘𝑆)) → ((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)))
61, 3, 4, 5syl3anc 1369 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)))
763adant3 1130 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)))
8 sseq2 3921 . . . 4 (((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅ → (((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ ((int‘𝐽)‘𝑆) ⊆ ∅))
983ad2ant3 1133 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → (((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ ((int‘𝐽)‘𝑆) ⊆ ∅))
107, 9mpbid 235 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) ⊆ ∅)
11 ss0 4298 . 2 (((int‘𝐽)‘𝑆) ⊆ ∅ → ((int‘𝐽)‘𝑆) = ∅)
1210, 11syl 17 1 ((𝐽 ∈ Top ∧ 𝑆𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1085   = wceq 1539  wcel 2112  wss 3861  c0 4228   cuni 4802  cfv 6341  Topctop 21608  intcnt 21732  clsccl 21733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-iin 4890  df-br 5038  df-opab 5100  df-mpt 5118  df-id 5435  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-top 21609  df-cld 21734  df-ntr 21735  df-cls 21736
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator