![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ntrcls0 | Structured version Visualization version GIF version |
Description: A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007.) |
Ref | Expression |
---|---|
clscld.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
ntrcls0 | β’ ((π½ β Top β§ π β π β§ ((intβπ½)β((clsβπ½)βπ)) = β ) β ((intβπ½)βπ) = β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . 5 β’ ((π½ β Top β§ π β π) β π½ β Top) | |
2 | clscld.1 | . . . . . 6 β’ π = βͺ π½ | |
3 | 2 | clsss3 22884 | . . . . 5 β’ ((π½ β Top β§ π β π) β ((clsβπ½)βπ) β π) |
4 | 2 | sscls 22881 | . . . . 5 β’ ((π½ β Top β§ π β π) β π β ((clsβπ½)βπ)) |
5 | 2 | ntrss 22880 | . . . . 5 β’ ((π½ β Top β§ ((clsβπ½)βπ) β π β§ π β ((clsβπ½)βπ)) β ((intβπ½)βπ) β ((intβπ½)β((clsβπ½)βπ))) |
6 | 1, 3, 4, 5 | syl3anc 1370 | . . . 4 β’ ((π½ β Top β§ π β π) β ((intβπ½)βπ) β ((intβπ½)β((clsβπ½)βπ))) |
7 | 6 | 3adant3 1131 | . . 3 β’ ((π½ β Top β§ π β π β§ ((intβπ½)β((clsβπ½)βπ)) = β ) β ((intβπ½)βπ) β ((intβπ½)β((clsβπ½)βπ))) |
8 | sseq2 4008 | . . . 4 β’ (((intβπ½)β((clsβπ½)βπ)) = β β (((intβπ½)βπ) β ((intβπ½)β((clsβπ½)βπ)) β ((intβπ½)βπ) β β )) | |
9 | 8 | 3ad2ant3 1134 | . . 3 β’ ((π½ β Top β§ π β π β§ ((intβπ½)β((clsβπ½)βπ)) = β ) β (((intβπ½)βπ) β ((intβπ½)β((clsβπ½)βπ)) β ((intβπ½)βπ) β β )) |
10 | 7, 9 | mpbid 231 | . 2 β’ ((π½ β Top β§ π β π β§ ((intβπ½)β((clsβπ½)βπ)) = β ) β ((intβπ½)βπ) β β ) |
11 | ss0 4398 | . 2 β’ (((intβπ½)βπ) β β β ((intβπ½)βπ) = β ) | |
12 | 10, 11 | syl 17 | 1 β’ ((π½ β Top β§ π β π β§ ((intβπ½)β((clsβπ½)βπ)) = β ) β ((intβπ½)βπ) = β ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wss 3948 β c0 4322 βͺ cuni 4908 βcfv 6543 Topctop 22716 intcnt 22842 clsccl 22843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-top 22717 df-cld 22844 df-ntr 22845 df-cls 22846 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |