Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ntrcls0 | Structured version Visualization version GIF version |
Description: A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntrcls0 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝐽 ∈ Top) | |
2 | clscld.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | clsss3 21774 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
4 | 2 | sscls 21771 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
5 | 2 | ntrss 21770 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑆) ⊆ 𝑋 ∧ 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) → ((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆))) |
6 | 1, 3, 4, 5 | syl3anc 1369 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆))) |
7 | 6 | 3adant3 1130 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆))) |
8 | sseq2 3921 | . . . 4 ⊢ (((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅ → (((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ ((int‘𝐽)‘𝑆) ⊆ ∅)) | |
9 | 8 | 3ad2ant3 1133 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → (((int‘𝐽)‘𝑆) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) ↔ ((int‘𝐽)‘𝑆) ⊆ ∅)) |
10 | 7, 9 | mpbid 235 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) ⊆ ∅) |
11 | ss0 4298 | . 2 ⊢ (((int‘𝐽)‘𝑆) ⊆ ∅ → ((int‘𝐽)‘𝑆) = ∅) | |
12 | 10, 11 | syl 17 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝑆)) = ∅) → ((int‘𝐽)‘𝑆) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ⊆ wss 3861 ∅c0 4228 ∪ cuni 4802 ‘cfv 6341 Topctop 21608 intcnt 21732 clsccl 21733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-iin 4890 df-br 5038 df-opab 5100 df-mpt 5118 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-top 21609 df-cld 21734 df-ntr 21735 df-cls 21736 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |