MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsndisj Structured version   Visualization version   GIF version

Theorem clsndisj 22983
Description: Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsndisj (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈𝐽𝑃𝑈)) → (𝑈𝑆) ≠ ∅)

Proof of Theorem clsndisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
2 simp2 1137 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝑋)
3 clscld.1 . . . . . 6 𝑋 = 𝐽
43clsss3 22967 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
54sseld 3931 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃𝑋))
653impia 1117 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃𝑋)
7 simp3 1138 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ ((cls‘𝐽)‘𝑆))
83elcls 22981 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
98biimpa 476 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
101, 2, 6, 7, 9syl31anc 1375 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
11 eleq2 2818 . . . . 5 (𝑥 = 𝑈 → (𝑃𝑥𝑃𝑈))
12 ineq1 4161 . . . . . 6 (𝑥 = 𝑈 → (𝑥𝑆) = (𝑈𝑆))
1312neeq1d 2985 . . . . 5 (𝑥 = 𝑈 → ((𝑥𝑆) ≠ ∅ ↔ (𝑈𝑆) ≠ ∅))
1411, 13imbi12d 344 . . . 4 (𝑥 = 𝑈 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) ↔ (𝑃𝑈 → (𝑈𝑆) ≠ ∅)))
1514rspccv 3572 . . 3 (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑈𝐽 → (𝑃𝑈 → (𝑈𝑆) ≠ ∅)))
1615imp32 418 . 2 ((∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ (𝑈𝐽𝑃𝑈)) → (𝑈𝑆) ≠ ∅)
1710, 16sylan 580 1 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈𝐽𝑃𝑈)) → (𝑈𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wral 3045  cin 3899  wss 3900  c0 4281   cuni 4857  cfv 6477  Topctop 22801  clsccl 22926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-top 22802  df-cld 22927  df-ntr 22928  df-cls 22929
This theorem is referenced by:  neindisj  23025  clsconn  23338  txcls  23512  ptclsg  23523  flimsncls  23894  hauspwpwf1  23895  met2ndci  24430  metdseq0  24763  heibor1lem  37828
  Copyright terms: Public domain W3C validator