![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clsndisj | Structured version Visualization version GIF version |
Description: Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsndisj | ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈)) → (𝑈 ∩ 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top) | |
2 | simp2 1137 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) | |
3 | clscld.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | clsss3 23089 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
5 | 4 | sseld 3995 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃 ∈ 𝑋)) |
6 | 5 | 3impia 1117 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ 𝑋) |
7 | simp3 1138 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) | |
8 | 3 | elcls 23103 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅))) |
9 | 8 | biimpa 476 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)) |
10 | 1, 2, 6, 7, 9 | syl31anc 1373 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)) |
11 | eleq2 2829 | . . . . 5 ⊢ (𝑥 = 𝑈 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑈)) | |
12 | ineq1 4222 | . . . . . 6 ⊢ (𝑥 = 𝑈 → (𝑥 ∩ 𝑆) = (𝑈 ∩ 𝑆)) | |
13 | 12 | neeq1d 2999 | . . . . 5 ⊢ (𝑥 = 𝑈 → ((𝑥 ∩ 𝑆) ≠ ∅ ↔ (𝑈 ∩ 𝑆) ≠ ∅)) |
14 | 11, 13 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑈 → ((𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) ↔ (𝑃 ∈ 𝑈 → (𝑈 ∩ 𝑆) ≠ ∅))) |
15 | 14 | rspccv 3620 | . . 3 ⊢ (∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) → (𝑈 ∈ 𝐽 → (𝑃 ∈ 𝑈 → (𝑈 ∩ 𝑆) ≠ ∅))) |
16 | 15 | imp32 418 | . 2 ⊢ ((∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) ∧ (𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈)) → (𝑈 ∩ 𝑆) ≠ ∅) |
17 | 10, 16 | sylan 580 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈)) → (𝑈 ∩ 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1538 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ∩ cin 3963 ⊆ wss 3964 ∅c0 4340 ∪ cuni 4913 ‘cfv 6566 Topctop 22921 clsccl 23048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-top 22922 df-cld 23049 df-ntr 23050 df-cls 23051 |
This theorem is referenced by: neindisj 23147 clsconn 23460 txcls 23634 ptclsg 23645 flimsncls 24016 hauspwpwf1 24017 met2ndci 24557 metdseq0 24898 heibor1lem 37808 |
Copyright terms: Public domain | W3C validator |