MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsndisj Structured version   Visualization version   GIF version

Theorem clsndisj 21158
Description: Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsndisj (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈𝐽𝑃𝑈)) → (𝑈𝑆) ≠ ∅)

Proof of Theorem clsndisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1166 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
2 simp2 1167 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝑋)
3 clscld.1 . . . . . 6 𝑋 = 𝐽
43clsss3 21142 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
54sseld 3759 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃𝑋))
653impia 1145 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃𝑋)
7 simp3 1168 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ ((cls‘𝐽)‘𝑆))
83elcls 21156 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
98biimpa 468 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
101, 2, 6, 7, 9syl31anc 1492 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
11 eleq2 2832 . . . . 5 (𝑥 = 𝑈 → (𝑃𝑥𝑃𝑈))
12 ineq1 3968 . . . . . 6 (𝑥 = 𝑈 → (𝑥𝑆) = (𝑈𝑆))
1312neeq1d 2995 . . . . 5 (𝑥 = 𝑈 → ((𝑥𝑆) ≠ ∅ ↔ (𝑈𝑆) ≠ ∅))
1411, 13imbi12d 335 . . . 4 (𝑥 = 𝑈 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) ↔ (𝑃𝑈 → (𝑈𝑆) ≠ ∅)))
1514rspccv 3457 . . 3 (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑈𝐽 → (𝑃𝑈 → (𝑈𝑆) ≠ ∅)))
1615imp32 409 . 2 ((∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ (𝑈𝐽𝑃𝑈)) → (𝑈𝑆) ≠ ∅)
1710, 16sylan 575 1 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈𝐽𝑃𝑈)) → (𝑈𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2936  wral 3054  cin 3730  wss 3731  c0 4078   cuni 4593  cfv 6067  Topctop 20976  clsccl 21101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-iin 4678  df-br 4809  df-opab 4871  df-mpt 4888  df-id 5184  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-top 20977  df-cld 21102  df-ntr 21103  df-cls 21104
This theorem is referenced by:  neindisj  21200  clsconn  21512  txcls  21686  ptclsg  21697  flimsncls  22068  hauspwpwf1  22069  met2ndci  22605  metdseq0  22935  heibor1lem  33962
  Copyright terms: Public domain W3C validator