| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clsndisj | Structured version Visualization version GIF version | ||
| Description: Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clsndisj | ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈)) → (𝑈 ∩ 𝑆) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top) | |
| 2 | simp2 1137 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) | |
| 3 | clscld.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | 3 | clsss3 23032 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| 5 | 4 | sseld 3964 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃 ∈ 𝑋)) |
| 6 | 5 | 3impia 1117 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ 𝑋) |
| 7 | simp3 1138 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) | |
| 8 | 3 | elcls 23046 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅))) |
| 9 | 8 | biimpa 476 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)) |
| 10 | 1, 2, 6, 7, 9 | syl31anc 1374 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)) |
| 11 | eleq2 2822 | . . . . 5 ⊢ (𝑥 = 𝑈 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑈)) | |
| 12 | ineq1 4195 | . . . . . 6 ⊢ (𝑥 = 𝑈 → (𝑥 ∩ 𝑆) = (𝑈 ∩ 𝑆)) | |
| 13 | 12 | neeq1d 2990 | . . . . 5 ⊢ (𝑥 = 𝑈 → ((𝑥 ∩ 𝑆) ≠ ∅ ↔ (𝑈 ∩ 𝑆) ≠ ∅)) |
| 14 | 11, 13 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑈 → ((𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) ↔ (𝑃 ∈ 𝑈 → (𝑈 ∩ 𝑆) ≠ ∅))) |
| 15 | 14 | rspccv 3603 | . . 3 ⊢ (∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) → (𝑈 ∈ 𝐽 → (𝑃 ∈ 𝑈 → (𝑈 ∩ 𝑆) ≠ ∅))) |
| 16 | 15 | imp32 418 | . 2 ⊢ ((∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) ∧ (𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈)) → (𝑈 ∩ 𝑆) ≠ ∅) |
| 17 | 10, 16 | sylan 580 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈)) → (𝑈 ∩ 𝑆) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∩ cin 3932 ⊆ wss 3933 ∅c0 4315 ∪ cuni 4889 ‘cfv 6542 Topctop 22866 clsccl 22991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-top 22867 df-cld 22992 df-ntr 22993 df-cls 22994 |
| This theorem is referenced by: neindisj 23090 clsconn 23403 txcls 23577 ptclsg 23588 flimsncls 23959 hauspwpwf1 23960 met2ndci 24498 metdseq0 24831 heibor1lem 37757 |
| Copyright terms: Public domain | W3C validator |