![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clsndisj | Structured version Visualization version GIF version |
Description: Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsndisj | ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈)) → (𝑈 ∩ 𝑆) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1137 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top) | |
2 | simp2 1138 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆 ⊆ 𝑋) | |
3 | clscld.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | clsss3 22555 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
5 | 4 | sseld 3981 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃 ∈ 𝑋)) |
6 | 5 | 3impia 1118 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ 𝑋) |
7 | simp3 1139 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ ((cls‘𝐽)‘𝑆)) | |
8 | 3 | elcls 22569 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅))) |
9 | 8 | biimpa 478 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)) |
10 | 1, 2, 6, 7, 9 | syl31anc 1374 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)) |
11 | eleq2 2823 | . . . . 5 ⊢ (𝑥 = 𝑈 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑈)) | |
12 | ineq1 4205 | . . . . . 6 ⊢ (𝑥 = 𝑈 → (𝑥 ∩ 𝑆) = (𝑈 ∩ 𝑆)) | |
13 | 12 | neeq1d 3001 | . . . . 5 ⊢ (𝑥 = 𝑈 → ((𝑥 ∩ 𝑆) ≠ ∅ ↔ (𝑈 ∩ 𝑆) ≠ ∅)) |
14 | 11, 13 | imbi12d 345 | . . . 4 ⊢ (𝑥 = 𝑈 → ((𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) ↔ (𝑃 ∈ 𝑈 → (𝑈 ∩ 𝑆) ≠ ∅))) |
15 | 14 | rspccv 3610 | . . 3 ⊢ (∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) → (𝑈 ∈ 𝐽 → (𝑃 ∈ 𝑈 → (𝑈 ∩ 𝑆) ≠ ∅))) |
16 | 15 | imp32 420 | . 2 ⊢ ((∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅) ∧ (𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈)) → (𝑈 ∩ 𝑆) ≠ ∅) |
17 | 10, 16 | sylan 581 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈)) → (𝑈 ∩ 𝑆) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 ∪ cuni 4908 ‘cfv 6541 Topctop 22387 clsccl 22514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-top 22388 df-cld 22515 df-ntr 22516 df-cls 22517 |
This theorem is referenced by: neindisj 22613 clsconn 22926 txcls 23100 ptclsg 23111 flimsncls 23482 hauspwpwf1 23483 met2ndci 24023 metdseq0 24362 heibor1lem 36666 |
Copyright terms: Public domain | W3C validator |