MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsndisj Structured version   Visualization version   GIF version

Theorem clsndisj 22799
Description: Any open set containing a point that belongs to the closure of a subset intersects the subset. One direction of Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsndisj (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈𝐽𝑃𝑈)) → (𝑈𝑆) ≠ ∅)

Proof of Theorem clsndisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
2 simp2 1137 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝑋)
3 clscld.1 . . . . . 6 𝑋 = 𝐽
43clsss3 22783 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
54sseld 3981 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃𝑋))
653impia 1117 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃𝑋)
7 simp3 1138 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ ((cls‘𝐽)‘𝑆))
83elcls 22797 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
98biimpa 477 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
101, 2, 6, 7, 9syl31anc 1373 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
11 eleq2 2822 . . . . 5 (𝑥 = 𝑈 → (𝑃𝑥𝑃𝑈))
12 ineq1 4205 . . . . . 6 (𝑥 = 𝑈 → (𝑥𝑆) = (𝑈𝑆))
1312neeq1d 3000 . . . . 5 (𝑥 = 𝑈 → ((𝑥𝑆) ≠ ∅ ↔ (𝑈𝑆) ≠ ∅))
1411, 13imbi12d 344 . . . 4 (𝑥 = 𝑈 → ((𝑃𝑥 → (𝑥𝑆) ≠ ∅) ↔ (𝑃𝑈 → (𝑈𝑆) ≠ ∅)))
1514rspccv 3609 . . 3 (∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) → (𝑈𝐽 → (𝑃𝑈 → (𝑈𝑆) ≠ ∅)))
1615imp32 419 . 2 ((∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅) ∧ (𝑈𝐽𝑃𝑈)) → (𝑈𝑆) ≠ ∅)
1710, 16sylan 580 1 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ∧ (𝑈𝐽𝑃𝑈)) → (𝑈𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  cin 3947  wss 3948  c0 4322   cuni 4908  cfv 6543  Topctop 22615  clsccl 22742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22616  df-cld 22743  df-ntr 22744  df-cls 22745
This theorem is referenced by:  neindisj  22841  clsconn  23154  txcls  23328  ptclsg  23339  flimsncls  23710  hauspwpwf1  23711  met2ndci  24251  metdseq0  24590  heibor1lem  36980
  Copyright terms: Public domain W3C validator