MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrdif Structured version   Visualization version   GIF version

Theorem ntrdif 22946
Description: An interior of a complement is the complement of the closure. This set is also known as the exterior of 𝐴. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrdif ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴)))

Proof of Theorem ntrdif
StepHypRef Expression
1 difss 4102 . . . 4 (𝑋𝐴) ⊆ 𝑋
2 clscld.1 . . . . 5 𝑋 = 𝐽
32ntrval2 22945 . . . 4 ((𝐽 ∈ Top ∧ (𝑋𝐴) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
41, 3mpan2 691 . . 3 (𝐽 ∈ Top → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
54adantr 480 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
6 simpr 484 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴𝑋)
7 dfss4 4235 . . . . 5 (𝐴𝑋 ↔ (𝑋 ∖ (𝑋𝐴)) = 𝐴)
86, 7sylib 218 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝑋 ∖ (𝑋𝐴)) = 𝐴)
98fveq2d 6865 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))) = ((cls‘𝐽)‘𝐴))
109difeq2d 4092 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))) = (𝑋 ∖ ((cls‘𝐽)‘𝐴)))
115, 10eqtrd 2765 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3914  wss 3917   cuni 4874  cfv 6514  Topctop 22787  intcnt 22911  clsccl 22912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-top 22788  df-cld 22913  df-ntr 22914  df-cls 22915
This theorem is referenced by:  clsun  36323
  Copyright terms: Public domain W3C validator