Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ntrdif | Structured version Visualization version GIF version |
Description: An interior of a complement is the complement of the closure. This set is also known as the exterior of 𝐴. (Contributed by Jeff Hankins, 31-Aug-2009.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntrdif | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4046 | . . . 4 ⊢ (𝑋 ∖ 𝐴) ⊆ 𝑋 | |
2 | clscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | ntrval2 21948 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝐴) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) |
4 | 1, 3 | mpan2 691 | . . 3 ⊢ (𝐽 ∈ Top → ((int‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) |
5 | 4 | adantr 484 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))))) |
6 | simpr 488 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 ⊆ 𝑋) | |
7 | dfss4 4173 | . . . . 5 ⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴) | |
8 | 6, 7 | sylib 221 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴) |
9 | 8 | fveq2d 6721 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴))) = ((cls‘𝐽)‘𝐴)) |
10 | 9 | difeq2d 4037 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ (𝑋 ∖ 𝐴)))) = (𝑋 ∖ ((cls‘𝐽)‘𝐴))) |
11 | 5, 10 | eqtrd 2777 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((int‘𝐽)‘(𝑋 ∖ 𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∖ cdif 3863 ⊆ wss 3866 ∪ cuni 4819 ‘cfv 6380 Topctop 21790 intcnt 21914 clsccl 21915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-top 21791 df-cld 21916 df-ntr 21917 df-cls 21918 |
This theorem is referenced by: clsun 34254 |
Copyright terms: Public domain | W3C validator |