MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrdif Structured version   Visualization version   GIF version

Theorem ntrdif 22203
Description: An interior of a complement is the complement of the closure. This set is also known as the exterior of 𝐴. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrdif ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴)))

Proof of Theorem ntrdif
StepHypRef Expression
1 difss 4066 . . . 4 (𝑋𝐴) ⊆ 𝑋
2 clscld.1 . . . . 5 𝑋 = 𝐽
32ntrval2 22202 . . . 4 ((𝐽 ∈ Top ∧ (𝑋𝐴) ⊆ 𝑋) → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
41, 3mpan2 688 . . 3 (𝐽 ∈ Top → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
54adantr 481 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))))
6 simpr 485 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴𝑋)
7 dfss4 4192 . . . . 5 (𝐴𝑋 ↔ (𝑋 ∖ (𝑋𝐴)) = 𝐴)
86, 7sylib 217 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝑋 ∖ (𝑋𝐴)) = 𝐴)
98fveq2d 6778 . . 3 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴))) = ((cls‘𝐽)‘𝐴))
109difeq2d 4057 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝑋 ∖ ((cls‘𝐽)‘(𝑋 ∖ (𝑋𝐴)))) = (𝑋 ∖ ((cls‘𝐽)‘𝐴)))
115, 10eqtrd 2778 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((int‘𝐽)‘(𝑋𝐴)) = (𝑋 ∖ ((cls‘𝐽)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cdif 3884  wss 3887   cuni 4839  cfv 6433  Topctop 22042  intcnt 22168  clsccl 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-cld 22170  df-ntr 22171  df-cls 22172
This theorem is referenced by:  clsun  34517
  Copyright terms: Public domain W3C validator