![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ntrdif | Structured version Visualization version GIF version |
Description: An interior of a complement is the complement of the closure. This set is also known as the exterior of π΄. (Contributed by Jeff Hankins, 31-Aug-2009.) |
Ref | Expression |
---|---|
clscld.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
ntrdif | β’ ((π½ β Top β§ π΄ β π) β ((intβπ½)β(π β π΄)) = (π β ((clsβπ½)βπ΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4131 | . . . 4 β’ (π β π΄) β π | |
2 | clscld.1 | . . . . 5 β’ π = βͺ π½ | |
3 | 2 | ntrval2 22875 | . . . 4 β’ ((π½ β Top β§ (π β π΄) β π) β ((intβπ½)β(π β π΄)) = (π β ((clsβπ½)β(π β (π β π΄))))) |
4 | 1, 3 | mpan2 688 | . . 3 β’ (π½ β Top β ((intβπ½)β(π β π΄)) = (π β ((clsβπ½)β(π β (π β π΄))))) |
5 | 4 | adantr 480 | . 2 β’ ((π½ β Top β§ π΄ β π) β ((intβπ½)β(π β π΄)) = (π β ((clsβπ½)β(π β (π β π΄))))) |
6 | simpr 484 | . . . . 5 β’ ((π½ β Top β§ π΄ β π) β π΄ β π) | |
7 | dfss4 4258 | . . . . 5 β’ (π΄ β π β (π β (π β π΄)) = π΄) | |
8 | 6, 7 | sylib 217 | . . . 4 β’ ((π½ β Top β§ π΄ β π) β (π β (π β π΄)) = π΄) |
9 | 8 | fveq2d 6895 | . . 3 β’ ((π½ β Top β§ π΄ β π) β ((clsβπ½)β(π β (π β π΄))) = ((clsβπ½)βπ΄)) |
10 | 9 | difeq2d 4122 | . 2 β’ ((π½ β Top β§ π΄ β π) β (π β ((clsβπ½)β(π β (π β π΄)))) = (π β ((clsβπ½)βπ΄))) |
11 | 5, 10 | eqtrd 2771 | 1 β’ ((π½ β Top β§ π΄ β π) β ((intβπ½)β(π β π΄)) = (π β ((clsβπ½)βπ΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β cdif 3945 β wss 3948 βͺ cuni 4908 βcfv 6543 Topctop 22715 intcnt 22841 clsccl 22842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-top 22716 df-cld 22843 df-ntr 22844 df-cls 22845 |
This theorem is referenced by: clsun 35679 |
Copyright terms: Public domain | W3C validator |