| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntruni | Structured version Visualization version GIF version | ||
| Description: A union of interiors is a subset of the interior of the union. The reverse inclusion may not hold. (Contributed by Jeff Hankins, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| ntruni.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ntruni | ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∪ 𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4889 | . . . 4 ⊢ (𝑜 ∈ 𝑂 → 𝑜 ⊆ ∪ 𝑂) | |
| 2 | sspwuni 5050 | . . . . 5 ⊢ (𝑂 ⊆ 𝒫 𝑋 ↔ ∪ 𝑂 ⊆ 𝑋) | |
| 3 | ntruni.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | 3 | ntrss 22971 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝑂 ⊆ 𝑋 ∧ 𝑜 ⊆ ∪ 𝑂) → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
| 5 | 4 | 3expia 1121 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝑂 ⊆ 𝑋) → (𝑜 ⊆ ∪ 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂))) |
| 6 | 2, 5 | sylan2b 594 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → (𝑜 ⊆ ∪ 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂))) |
| 7 | 1, 6 | syl5 34 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → (𝑜 ∈ 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂))) |
| 8 | 7 | ralrimiv 3124 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∀𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
| 9 | iunss 4995 | . 2 ⊢ (∪ 𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂) ↔ ∀𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) | |
| 10 | 8, 9 | sylibr 234 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∪ 𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 𝒫 cpw 4549 ∪ cuni 4858 ∪ ciun 4941 ‘cfv 6486 Topctop 22809 intcnt 22933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-top 22810 df-cld 22935 df-ntr 22936 df-cls 22937 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |