Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntruni | Structured version Visualization version GIF version |
Description: A union of interiors is a subset of the interior of the union. The reverse inclusion may not hold. (Contributed by Jeff Hankins, 31-Aug-2009.) |
Ref | Expression |
---|---|
ntruni.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntruni | ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∪ 𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4884 | . . . 4 ⊢ (𝑜 ∈ 𝑂 → 𝑜 ⊆ ∪ 𝑂) | |
2 | sspwuni 5044 | . . . . 5 ⊢ (𝑂 ⊆ 𝒫 𝑋 ↔ ∪ 𝑂 ⊆ 𝑋) | |
3 | ntruni.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | ntrss 22304 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝑂 ⊆ 𝑋 ∧ 𝑜 ⊆ ∪ 𝑂) → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
5 | 4 | 3expia 1120 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝑂 ⊆ 𝑋) → (𝑜 ⊆ ∪ 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂))) |
6 | 2, 5 | sylan2b 594 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → (𝑜 ⊆ ∪ 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂))) |
7 | 1, 6 | syl5 34 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → (𝑜 ∈ 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂))) |
8 | 7 | ralrimiv 3138 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∀𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
9 | iunss 4989 | . 2 ⊢ (∪ 𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂) ↔ ∀𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) | |
10 | 8, 9 | sylibr 233 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∪ 𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ⊆ wss 3897 𝒫 cpw 4546 ∪ cuni 4851 ∪ ciun 4938 ‘cfv 6473 Topctop 22140 intcnt 22266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-iin 4941 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-top 22141 df-cld 22268 df-ntr 22269 df-cls 22270 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |