Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntruni Structured version   Visualization version   GIF version

Theorem ntruni 34443
Description: A union of interiors is a subset of the interior of the union. The reverse inclusion may not hold. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
ntruni.1 𝑋 = 𝐽
Assertion
Ref Expression
ntruni ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → 𝑜𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂))
Distinct variable groups:   𝑜,𝐽   𝑜,𝑂   𝑜,𝑋

Proof of Theorem ntruni
StepHypRef Expression
1 elssuni 4868 . . . 4 (𝑜𝑂𝑜 𝑂)
2 sspwuni 5025 . . . . 5 (𝑂 ⊆ 𝒫 𝑋 𝑂𝑋)
3 ntruni.1 . . . . . . 7 𝑋 = 𝐽
43ntrss 22114 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑂𝑋𝑜 𝑂) → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂))
543expia 1119 . . . . 5 ((𝐽 ∈ Top ∧ 𝑂𝑋) → (𝑜 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂)))
62, 5sylan2b 593 . . . 4 ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → (𝑜 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂)))
71, 6syl5 34 . . 3 ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → (𝑜𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂)))
87ralrimiv 3106 . 2 ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∀𝑜𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂))
9 iunss 4971 . 2 ( 𝑜𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂) ↔ ∀𝑜𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂))
108, 9sylibr 233 1 ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → 𝑜𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  𝒫 cpw 4530   cuni 4836   ciun 4921  cfv 6418  Topctop 21950  intcnt 22076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-cld 22078  df-ntr 22079  df-cls 22080
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator