| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntruni | Structured version Visualization version GIF version | ||
| Description: A union of interiors is a subset of the interior of the union. The reverse inclusion may not hold. (Contributed by Jeff Hankins, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| ntruni.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ntruni | ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∪ 𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4901 | . . . 4 ⊢ (𝑜 ∈ 𝑂 → 𝑜 ⊆ ∪ 𝑂) | |
| 2 | sspwuni 5064 | . . . . 5 ⊢ (𝑂 ⊆ 𝒫 𝑋 ↔ ∪ 𝑂 ⊆ 𝑋) | |
| 3 | ntruni.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | 3 | ntrss 22942 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝑂 ⊆ 𝑋 ∧ 𝑜 ⊆ ∪ 𝑂) → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
| 5 | 4 | 3expia 1121 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝑂 ⊆ 𝑋) → (𝑜 ⊆ ∪ 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂))) |
| 6 | 2, 5 | sylan2b 594 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → (𝑜 ⊆ ∪ 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂))) |
| 7 | 1, 6 | syl5 34 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → (𝑜 ∈ 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂))) |
| 8 | 7 | ralrimiv 3124 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∀𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
| 9 | iunss 5009 | . 2 ⊢ (∪ 𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂) ↔ ∀𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) | |
| 10 | 8, 9 | sylibr 234 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∪ 𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 ∪ ciun 4955 ‘cfv 6511 Topctop 22780 intcnt 22904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-top 22781 df-cld 22906 df-ntr 22907 df-cls 22908 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |