![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntruni | Structured version Visualization version GIF version |
Description: A union of interiors is a subset of the interior of the union. The reverse inclusion may not hold. (Contributed by Jeff Hankins, 31-Aug-2009.) |
Ref | Expression |
---|---|
ntruni.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntruni | ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∪ 𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4689 | . . . 4 ⊢ (𝑜 ∈ 𝑂 → 𝑜 ⊆ ∪ 𝑂) | |
2 | sspwuni 4832 | . . . . 5 ⊢ (𝑂 ⊆ 𝒫 𝑋 ↔ ∪ 𝑂 ⊆ 𝑋) | |
3 | ntruni.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | ntrss 21230 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝑂 ⊆ 𝑋 ∧ 𝑜 ⊆ ∪ 𝑂) → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
5 | 4 | 3expia 1154 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝑂 ⊆ 𝑋) → (𝑜 ⊆ ∪ 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂))) |
6 | 2, 5 | sylan2b 587 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → (𝑜 ⊆ ∪ 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂))) |
7 | 1, 6 | syl5 34 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → (𝑜 ∈ 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂))) |
8 | 7 | ralrimiv 3174 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∀𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
9 | iunss 4781 | . 2 ⊢ (∪ 𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂) ↔ ∀𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) | |
10 | 8, 9 | sylibr 226 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∪ 𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ⊆ wss 3798 𝒫 cpw 4378 ∪ cuni 4658 ∪ ciun 4740 ‘cfv 6123 Topctop 21068 intcnt 21192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-top 21069 df-cld 21194 df-ntr 21195 df-cls 21196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |