Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntruni Structured version   Visualization version   GIF version

Theorem ntruni 36300
Description: A union of interiors is a subset of the interior of the union. The reverse inclusion may not hold. (Contributed by Jeff Hankins, 31-Aug-2009.)
Hypothesis
Ref Expression
ntruni.1 𝑋 = 𝐽
Assertion
Ref Expression
ntruni ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → 𝑜𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂))
Distinct variable groups:   𝑜,𝐽   𝑜,𝑂   𝑜,𝑋

Proof of Theorem ntruni
StepHypRef Expression
1 elssuni 4891 . . . 4 (𝑜𝑂𝑜 𝑂)
2 sspwuni 5052 . . . . 5 (𝑂 ⊆ 𝒫 𝑋 𝑂𝑋)
3 ntruni.1 . . . . . . 7 𝑋 = 𝐽
43ntrss 22958 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑂𝑋𝑜 𝑂) → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂))
543expia 1121 . . . . 5 ((𝐽 ∈ Top ∧ 𝑂𝑋) → (𝑜 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂)))
62, 5sylan2b 594 . . . 4 ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → (𝑜 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂)))
71, 6syl5 34 . . 3 ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → (𝑜𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂)))
87ralrimiv 3120 . 2 ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∀𝑜𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂))
9 iunss 4997 . 2 ( 𝑜𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂) ↔ ∀𝑜𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂))
108, 9sylibr 234 1 ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → 𝑜𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘ 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3905  𝒫 cpw 4553   cuni 4861   ciun 4944  cfv 6486  Topctop 22796  intcnt 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-top 22797  df-cld 22922  df-ntr 22923  df-cls 22924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator