![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntruni | Structured version Visualization version GIF version |
Description: A union of interiors is a subset of the interior of the union. The reverse inclusion may not hold. (Contributed by Jeff Hankins, 31-Aug-2009.) |
Ref | Expression |
---|---|
ntruni.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
ntruni | β’ ((π½ β Top β§ π β π« π) β βͺ π β π ((intβπ½)βπ) β ((intβπ½)ββͺ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4935 | . . . 4 β’ (π β π β π β βͺ π) | |
2 | sspwuni 5097 | . . . . 5 β’ (π β π« π β βͺ π β π) | |
3 | ntruni.1 | . . . . . . 7 β’ π = βͺ π½ | |
4 | 3 | ntrss 22952 | . . . . . 6 β’ ((π½ β Top β§ βͺ π β π β§ π β βͺ π) β ((intβπ½)βπ) β ((intβπ½)ββͺ π)) |
5 | 4 | 3expia 1119 | . . . . 5 β’ ((π½ β Top β§ βͺ π β π) β (π β βͺ π β ((intβπ½)βπ) β ((intβπ½)ββͺ π))) |
6 | 2, 5 | sylan2b 593 | . . . 4 β’ ((π½ β Top β§ π β π« π) β (π β βͺ π β ((intβπ½)βπ) β ((intβπ½)ββͺ π))) |
7 | 1, 6 | syl5 34 | . . 3 β’ ((π½ β Top β§ π β π« π) β (π β π β ((intβπ½)βπ) β ((intβπ½)ββͺ π))) |
8 | 7 | ralrimiv 3140 | . 2 β’ ((π½ β Top β§ π β π« π) β βπ β π ((intβπ½)βπ) β ((intβπ½)ββͺ π)) |
9 | iunss 5042 | . 2 β’ (βͺ π β π ((intβπ½)βπ) β ((intβπ½)ββͺ π) β βπ β π ((intβπ½)βπ) β ((intβπ½)ββͺ π)) | |
10 | 8, 9 | sylibr 233 | 1 β’ ((π½ β Top β§ π β π« π) β βͺ π β π ((intβπ½)βπ) β ((intβπ½)ββͺ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 βwral 3056 β wss 3944 π« cpw 4598 βͺ cuni 4903 βͺ ciun 4991 βcfv 6542 Topctop 22788 intcnt 22914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-top 22789 df-cld 22916 df-ntr 22917 df-cls 22918 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |