![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntruni | Structured version Visualization version GIF version |
Description: A union of interiors is a subset of the interior of the union. The reverse inclusion may not hold. (Contributed by Jeff Hankins, 31-Aug-2009.) |
Ref | Expression |
---|---|
ntruni.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
ntruni | β’ ((π½ β Top β§ π β π« π) β βͺ π β π ((intβπ½)βπ) β ((intβπ½)ββͺ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4931 | . . . 4 β’ (π β π β π β βͺ π) | |
2 | sspwuni 5093 | . . . . 5 β’ (π β π« π β βͺ π β π) | |
3 | ntruni.1 | . . . . . . 7 β’ π = βͺ π½ | |
4 | 3 | ntrss 22881 | . . . . . 6 β’ ((π½ β Top β§ βͺ π β π β§ π β βͺ π) β ((intβπ½)βπ) β ((intβπ½)ββͺ π)) |
5 | 4 | 3expia 1118 | . . . . 5 β’ ((π½ β Top β§ βͺ π β π) β (π β βͺ π β ((intβπ½)βπ) β ((intβπ½)ββͺ π))) |
6 | 2, 5 | sylan2b 593 | . . . 4 β’ ((π½ β Top β§ π β π« π) β (π β βͺ π β ((intβπ½)βπ) β ((intβπ½)ββͺ π))) |
7 | 1, 6 | syl5 34 | . . 3 β’ ((π½ β Top β§ π β π« π) β (π β π β ((intβπ½)βπ) β ((intβπ½)ββͺ π))) |
8 | 7 | ralrimiv 3137 | . 2 β’ ((π½ β Top β§ π β π« π) β βπ β π ((intβπ½)βπ) β ((intβπ½)ββͺ π)) |
9 | iunss 5038 | . 2 β’ (βͺ π β π ((intβπ½)βπ) β ((intβπ½)ββͺ π) β βπ β π ((intβπ½)βπ) β ((intβπ½)ββͺ π)) | |
10 | 8, 9 | sylibr 233 | 1 β’ ((π½ β Top β§ π β π« π) β βͺ π β π ((intβπ½)βπ) β ((intβπ½)ββͺ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3053 β wss 3940 π« cpw 4594 βͺ cuni 4899 βͺ ciun 4987 βcfv 6533 Topctop 22717 intcnt 22843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-top 22718 df-cld 22845 df-ntr 22846 df-cls 22847 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |