| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntruni | Structured version Visualization version GIF version | ||
| Description: A union of interiors is a subset of the interior of the union. The reverse inclusion may not hold. (Contributed by Jeff Hankins, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| ntruni.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ntruni | ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∪ 𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4913 | . . . 4 ⊢ (𝑜 ∈ 𝑂 → 𝑜 ⊆ ∪ 𝑂) | |
| 2 | sspwuni 5076 | . . . . 5 ⊢ (𝑂 ⊆ 𝒫 𝑋 ↔ ∪ 𝑂 ⊆ 𝑋) | |
| 3 | ntruni.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | 3 | ntrss 22993 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝑂 ⊆ 𝑋 ∧ 𝑜 ⊆ ∪ 𝑂) → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
| 5 | 4 | 3expia 1121 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ ∪ 𝑂 ⊆ 𝑋) → (𝑜 ⊆ ∪ 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂))) |
| 6 | 2, 5 | sylan2b 594 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → (𝑜 ⊆ ∪ 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂))) |
| 7 | 1, 6 | syl5 34 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → (𝑜 ∈ 𝑂 → ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂))) |
| 8 | 7 | ralrimiv 3131 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∀𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
| 9 | iunss 5021 | . 2 ⊢ (∪ 𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂) ↔ ∀𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) | |
| 10 | 8, 9 | sylibr 234 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑂 ⊆ 𝒫 𝑋) → ∪ 𝑜 ∈ 𝑂 ((int‘𝐽)‘𝑜) ⊆ ((int‘𝐽)‘∪ 𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 ∪ ciun 4967 ‘cfv 6531 Topctop 22831 intcnt 22955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-top 22832 df-cld 22957 df-ntr 22958 df-cls 22959 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |