Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvf | Structured version Visualization version GIF version |
Description: Mapping for the norm function. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvf.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvf.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvf | ⊢ (𝑈 ∈ NrmCVec → 𝑁:𝑋⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvf.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | eqid 2759 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
3 | eqid 2759 | . . 3 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | eqid 2759 | . . 3 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
5 | nvf.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
6 | 1, 2, 3, 4, 5 | nvi 28489 | . 2 ⊢ (𝑈 ∈ NrmCVec → (〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
7 | 6 | simp2d 1141 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑁:𝑋⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ∀wral 3071 〈cop 4529 class class class wbr 5033 ⟶wf 6332 ‘cfv 6336 (class class class)co 7151 ℂcc 10566 ℝcr 10567 0cc0 10568 + caddc 10571 · cmul 10573 ≤ cle 10707 abscabs 14634 CVecOLDcvc 28433 NrmCVeccnv 28459 +𝑣 cpv 28460 BaseSetcba 28461 ·𝑠OLD cns 28462 0veccn0v 28463 normCVcnmcv 28465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-oprab 7155 df-1st 7694 df-2nd 7695 df-vc 28434 df-nv 28467 df-va 28470 df-ba 28471 df-sm 28472 df-0v 28473 df-nmcv 28475 |
This theorem is referenced by: nvcl 28536 imsdf 28564 nmcvcn 28570 sspn 28611 hilnormi 29038 |
Copyright terms: Public domain | W3C validator |