Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(BaseSet‘𝑈) =
(BaseSet‘𝑈) |
2 | | vacn.g |
. . 3
⊢ 𝐺 = ( +𝑣
‘𝑈) |
3 | 1, 2 | nvgf 28881 |
. 2
⊢ (𝑈 ∈ NrmCVec → 𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈)) |
4 | | rphalfcl 12686 |
. . . . . 6
⊢ (𝑟 ∈ ℝ+
→ (𝑟 / 2) ∈
ℝ+) |
5 | 4 | adantl 481 |
. . . . 5
⊢ (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈
ℝ+) |
6 | | simplll 771 |
. . . . . . . . . 10
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑈 ∈ NrmCVec) |
7 | | vacn.c |
. . . . . . . . . . 11
⊢ 𝐶 = (IndMet‘𝑈) |
8 | 1, 7 | imsmet 28954 |
. . . . . . . . . 10
⊢ (𝑈 ∈ NrmCVec → 𝐶 ∈
(Met‘(BaseSet‘𝑈))) |
9 | 6, 8 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝐶 ∈ (Met‘(BaseSet‘𝑈))) |
10 | | simplrl 773 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (BaseSet‘𝑈)) |
11 | 10 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑥 ∈ (BaseSet‘𝑈)) |
12 | | simprl 767 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑧 ∈ (BaseSet‘𝑈)) |
13 | | metcl 23393 |
. . . . . . . . 9
⊢ ((𝐶 ∈
(Met‘(BaseSet‘𝑈)) ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑧) ∈ ℝ) |
14 | 9, 11, 12, 13 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥𝐶𝑧) ∈ ℝ) |
15 | | simplrr 774 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (BaseSet‘𝑈)) |
16 | 15 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑦 ∈ (BaseSet‘𝑈)) |
17 | | simprr 769 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑤 ∈ (BaseSet‘𝑈)) |
18 | | metcl 23393 |
. . . . . . . . 9
⊢ ((𝐶 ∈
(Met‘(BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑦𝐶𝑤) ∈ ℝ) |
19 | 9, 16, 17, 18 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑦𝐶𝑤) ∈ ℝ) |
20 | | rpre 12667 |
. . . . . . . . 9
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ) |
21 | 20 | ad2antlr 723 |
. . . . . . . 8
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑟 ∈ ℝ) |
22 | | lt2halves 12138 |
. . . . . . . 8
⊢ (((𝑥𝐶𝑧) ∈ ℝ ∧ (𝑦𝐶𝑤) ∈ ℝ ∧ 𝑟 ∈ ℝ) → (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟)) |
23 | 14, 19, 21, 22 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟)) |
24 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (
−𝑣 ‘𝑈) = ( −𝑣
‘𝑈) |
25 | 1, 24 | nvmcl 28909 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥( −𝑣 ‘𝑈)𝑧) ∈ (BaseSet‘𝑈)) |
26 | 6, 11, 12, 25 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥( −𝑣 ‘𝑈)𝑧) ∈ (BaseSet‘𝑈)) |
27 | 1, 24 | nvmcl 28909 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑦( −𝑣 ‘𝑈)𝑤) ∈ (BaseSet‘𝑈)) |
28 | 6, 16, 17, 27 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑦( −𝑣 ‘𝑈)𝑤) ∈ (BaseSet‘𝑈)) |
29 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(normCV‘𝑈) = (normCV‘𝑈) |
30 | 1, 2, 29 | nvtri 28933 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥( −𝑣
‘𝑈)𝑧) ∈ (BaseSet‘𝑈) ∧ (𝑦( −𝑣 ‘𝑈)𝑤) ∈ (BaseSet‘𝑈)) → ((normCV‘𝑈)‘((𝑥( −𝑣 ‘𝑈)𝑧)𝐺(𝑦( −𝑣 ‘𝑈)𝑤))) ≤ (((normCV‘𝑈)‘(𝑥( −𝑣 ‘𝑈)𝑧)) + ((normCV‘𝑈)‘(𝑦( −𝑣 ‘𝑈)𝑤)))) |
31 | 6, 26, 28, 30 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((normCV‘𝑈)‘((𝑥( −𝑣 ‘𝑈)𝑧)𝐺(𝑦( −𝑣 ‘𝑈)𝑤))) ≤ (((normCV‘𝑈)‘(𝑥( −𝑣 ‘𝑈)𝑧)) + ((normCV‘𝑈)‘(𝑦( −𝑣 ‘𝑈)𝑤)))) |
32 | 1, 2 | nvgcl 28883 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈)) |
33 | 6, 11, 16, 32 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈)) |
34 | 1, 2 | nvgcl 28883 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈)) |
35 | 6, 12, 17, 34 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈)) |
36 | 1, 24, 29, 7 | imsdval 28949 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈) ∧ (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) = ((normCV‘𝑈)‘((𝑥𝐺𝑦)( −𝑣 ‘𝑈)(𝑧𝐺𝑤)))) |
37 | 6, 33, 35, 36 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) = ((normCV‘𝑈)‘((𝑥𝐺𝑦)( −𝑣 ‘𝑈)(𝑧𝐺𝑤)))) |
38 | 1, 2, 24 | nvaddsub4 28920 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)( −𝑣 ‘𝑈)(𝑧𝐺𝑤)) = ((𝑥( −𝑣 ‘𝑈)𝑧)𝐺(𝑦( −𝑣 ‘𝑈)𝑤))) |
39 | 6, 11, 16, 12, 17, 38 | syl122anc 1377 |
. . . . . . . . . . 11
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)( −𝑣 ‘𝑈)(𝑧𝐺𝑤)) = ((𝑥( −𝑣 ‘𝑈)𝑧)𝐺(𝑦( −𝑣 ‘𝑈)𝑤))) |
40 | 39 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((normCV‘𝑈)‘((𝑥𝐺𝑦)( −𝑣 ‘𝑈)(𝑧𝐺𝑤))) = ((normCV‘𝑈)‘((𝑥( −𝑣 ‘𝑈)𝑧)𝐺(𝑦( −𝑣 ‘𝑈)𝑤)))) |
41 | 37, 40 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) = ((normCV‘𝑈)‘((𝑥( −𝑣 ‘𝑈)𝑧)𝐺(𝑦( −𝑣 ‘𝑈)𝑤)))) |
42 | 1, 24, 29, 7 | imsdval 28949 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑧) = ((normCV‘𝑈)‘(𝑥( −𝑣 ‘𝑈)𝑧))) |
43 | 6, 11, 12, 42 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥𝐶𝑧) = ((normCV‘𝑈)‘(𝑥( −𝑣 ‘𝑈)𝑧))) |
44 | 1, 24, 29, 7 | imsdval 28949 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑦𝐶𝑤) = ((normCV‘𝑈)‘(𝑦( −𝑣 ‘𝑈)𝑤))) |
45 | 6, 16, 17, 44 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑦𝐶𝑤) = ((normCV‘𝑈)‘(𝑦( −𝑣 ‘𝑈)𝑤))) |
46 | 43, 45 | oveq12d 7273 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) = (((normCV‘𝑈)‘(𝑥( −𝑣 ‘𝑈)𝑧)) + ((normCV‘𝑈)‘(𝑦( −𝑣 ‘𝑈)𝑤)))) |
47 | 31, 41, 46 | 3brtr4d 5102 |
. . . . . . . 8
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ≤ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤))) |
48 | | metcl 23393 |
. . . . . . . . . 10
⊢ ((𝐶 ∈
(Met‘(BaseSet‘𝑈)) ∧ (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈) ∧ (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ∈ ℝ) |
49 | 9, 33, 35, 48 | syl3anc 1369 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ∈ ℝ) |
50 | 14, 19 | readdcld 10935 |
. . . . . . . . 9
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∈ ℝ) |
51 | | lelttr 10996 |
. . . . . . . . 9
⊢ ((((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ∈ ℝ ∧ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ≤ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∧ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)) |
52 | 49, 50, 21, 51 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ≤ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∧ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)) |
53 | 47, 52 | mpand 691 |
. . . . . . 7
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟 → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)) |
54 | 23, 53 | syld 47 |
. . . . . 6
⊢ ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)) |
55 | 54 | ralrimivva 3114 |
. . . . 5
⊢ (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) →
∀𝑧 ∈
(BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)) |
56 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝑠 = (𝑟 / 2) → ((𝑥𝐶𝑧) < 𝑠 ↔ (𝑥𝐶𝑧) < (𝑟 / 2))) |
57 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝑠 = (𝑟 / 2) → ((𝑦𝐶𝑤) < 𝑠 ↔ (𝑦𝐶𝑤) < (𝑟 / 2))) |
58 | 56, 57 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑠 = (𝑟 / 2) → (((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) ↔ ((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)))) |
59 | 58 | imbi1d 341 |
. . . . . . 7
⊢ (𝑠 = (𝑟 / 2) → ((((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟) ↔ (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))) |
60 | 59 | 2ralbidv 3122 |
. . . . . 6
⊢ (𝑠 = (𝑟 / 2) → (∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟) ↔ ∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))) |
61 | 60 | rspcev 3552 |
. . . . 5
⊢ (((𝑟 / 2) ∈ ℝ+
∧ ∀𝑧 ∈
(BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+ ∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)) |
62 | 5, 55, 61 | syl2anc 583 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) →
∃𝑠 ∈
ℝ+ ∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)) |
63 | 62 | ralrimiva 3107 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) → ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)) |
64 | 63 | ralrimivva 3114 |
. 2
⊢ (𝑈 ∈ NrmCVec →
∀𝑥 ∈
(BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑈)∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)) |
65 | 1, 7 | imsxmet 28955 |
. . 3
⊢ (𝑈 ∈ NrmCVec → 𝐶 ∈
(∞Met‘(BaseSet‘𝑈))) |
66 | | vacn.j |
. . . 4
⊢ 𝐽 = (MetOpen‘𝐶) |
67 | 66, 66, 66 | txmetcn 23610 |
. . 3
⊢ ((𝐶 ∈
(∞Met‘(BaseSet‘𝑈)) ∧ 𝐶 ∈
(∞Met‘(BaseSet‘𝑈)) ∧ 𝐶 ∈
(∞Met‘(BaseSet‘𝑈))) → (𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ (𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑈)∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)))) |
68 | 65, 65, 65, 67 | syl3anc 1369 |
. 2
⊢ (𝑈 ∈ NrmCVec → (𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ (𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑈)∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
∀𝑧 ∈
(BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)))) |
69 | 3, 64, 68 | mpbir2and 709 |
1
⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |