MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vacn Structured version   Visualization version   GIF version

Theorem vacn 30713
Description: Vector addition is jointly continuous in both arguments. (Contributed by Jeff Hankins, 16-Jun-2009.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
vacn.c 𝐶 = (IndMet‘𝑈)
vacn.j 𝐽 = (MetOpen‘𝐶)
vacn.g 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
vacn (𝑈 ∈ NrmCVec → 𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))

Proof of Theorem vacn
Dummy variables 𝑠 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 vacn.g . . 3 𝐺 = ( +𝑣𝑈)
31, 2nvgf 30637 . 2 (𝑈 ∈ NrmCVec → 𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈))
4 rphalfcl 13062 . . . . . 6 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
54adantl 481 . . . . 5 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
6 simplll 775 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑈 ∈ NrmCVec)
7 vacn.c . . . . . . . . . . 11 𝐶 = (IndMet‘𝑈)
81, 7imsmet 30710 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
96, 8syl 17 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
10 simplrl 777 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (BaseSet‘𝑈))
1110adantr 480 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑥 ∈ (BaseSet‘𝑈))
12 simprl 771 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑧 ∈ (BaseSet‘𝑈))
13 metcl 24342 . . . . . . . . 9 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑧) ∈ ℝ)
149, 11, 12, 13syl3anc 1373 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥𝐶𝑧) ∈ ℝ)
15 simplrr 778 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (BaseSet‘𝑈))
1615adantr 480 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑦 ∈ (BaseSet‘𝑈))
17 simprr 773 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑤 ∈ (BaseSet‘𝑈))
18 metcl 24342 . . . . . . . . 9 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑦𝐶𝑤) ∈ ℝ)
199, 16, 17, 18syl3anc 1373 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑦𝐶𝑤) ∈ ℝ)
20 rpre 13043 . . . . . . . . 9 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
2120ad2antlr 727 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑟 ∈ ℝ)
22 lt2halves 12501 . . . . . . . 8 (((𝑥𝐶𝑧) ∈ ℝ ∧ (𝑦𝐶𝑤) ∈ ℝ ∧ 𝑟 ∈ ℝ) → (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟))
2314, 19, 21, 22syl3anc 1373 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟))
24 eqid 2737 . . . . . . . . . . . 12 ( −𝑣𝑈) = ( −𝑣𝑈)
251, 24nvmcl 30665 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥( −𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
266, 11, 12, 25syl3anc 1373 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥( −𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
271, 24nvmcl 30665 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑦( −𝑣𝑈)𝑤) ∈ (BaseSet‘𝑈))
286, 16, 17, 27syl3anc 1373 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑦( −𝑣𝑈)𝑤) ∈ (BaseSet‘𝑈))
29 eqid 2737 . . . . . . . . . . 11 (normCV𝑈) = (normCV𝑈)
301, 2, 29nvtri 30689 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑥( −𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈) ∧ (𝑦( −𝑣𝑈)𝑤) ∈ (BaseSet‘𝑈)) → ((normCV𝑈)‘((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤))) ≤ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)) + ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤))))
316, 26, 28, 30syl3anc 1373 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((normCV𝑈)‘((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤))) ≤ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)) + ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤))))
321, 2nvgcl 30639 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈))
336, 11, 16, 32syl3anc 1373 . . . . . . . . . . 11 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈))
341, 2nvgcl 30639 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈))
356, 12, 17, 34syl3anc 1373 . . . . . . . . . . 11 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈))
361, 24, 29, 7imsdval 30705 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈) ∧ (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) = ((normCV𝑈)‘((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤))))
376, 33, 35, 36syl3anc 1373 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) = ((normCV𝑈)‘((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤))))
381, 2, 24nvaddsub4 30676 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤)) = ((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤)))
396, 11, 16, 12, 17, 38syl122anc 1381 . . . . . . . . . . 11 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤)) = ((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤)))
4039fveq2d 6910 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((normCV𝑈)‘((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤))) = ((normCV𝑈)‘((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤))))
4137, 40eqtrd 2777 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) = ((normCV𝑈)‘((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤))))
421, 24, 29, 7imsdval 30705 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑧) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)))
436, 11, 12, 42syl3anc 1373 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥𝐶𝑧) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)))
441, 24, 29, 7imsdval 30705 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑦𝐶𝑤) = ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤)))
456, 16, 17, 44syl3anc 1373 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑦𝐶𝑤) = ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤)))
4643, 45oveq12d 7449 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) = (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)) + ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤))))
4731, 41, 463brtr4d 5175 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ≤ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)))
48 metcl 24342 . . . . . . . . . 10 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈) ∧ (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ∈ ℝ)
499, 33, 35, 48syl3anc 1373 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ∈ ℝ)
5014, 19readdcld 11290 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∈ ℝ)
51 lelttr 11351 . . . . . . . . 9 ((((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ∈ ℝ ∧ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ≤ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∧ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
5249, 50, 21, 51syl3anc 1373 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ≤ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∧ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
5347, 52mpand 695 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟 → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
5423, 53syld 47 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
5554ralrimivva 3202 . . . . 5 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → ∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
56 breq2 5147 . . . . . . . . 9 (𝑠 = (𝑟 / 2) → ((𝑥𝐶𝑧) < 𝑠 ↔ (𝑥𝐶𝑧) < (𝑟 / 2)))
57 breq2 5147 . . . . . . . . 9 (𝑠 = (𝑟 / 2) → ((𝑦𝐶𝑤) < 𝑠 ↔ (𝑦𝐶𝑤) < (𝑟 / 2)))
5856, 57anbi12d 632 . . . . . . . 8 (𝑠 = (𝑟 / 2) → (((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) ↔ ((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2))))
5958imbi1d 341 . . . . . . 7 (𝑠 = (𝑟 / 2) → ((((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟) ↔ (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)))
60592ralbidv 3221 . . . . . 6 (𝑠 = (𝑟 / 2) → (∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟) ↔ ∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)))
6160rspcev 3622 . . . . 5 (((𝑟 / 2) ∈ ℝ+ ∧ ∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
625, 55, 61syl2anc 584 . . . 4 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
6362ralrimiva 3146 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
6463ralrimivva 3202 . 2 (𝑈 ∈ NrmCVec → ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑈)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
651, 7imsxmet 30711 . . 3 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
66 vacn.j . . . 4 𝐽 = (MetOpen‘𝐶)
6766, 66, 66txmetcn 24561 . . 3 ((𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ 𝐶 ∈ (∞Met‘(BaseSet‘𝑈))) → (𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ (𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑈)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))))
6865, 65, 65, 67syl3anc 1373 . 2 (𝑈 ∈ NrmCVec → (𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ (𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑈)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))))
693, 64, 68mpbir2and 713 1 (𝑈 ∈ NrmCVec → 𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070   class class class wbr 5143   × cxp 5683  wf 6557  cfv 6561  (class class class)co 7431  cr 11154   + caddc 11158   < clt 11295  cle 11296   / cdiv 11920  2c2 12321  +crp 13034  ∞Metcxmet 21349  Metcmet 21350  MetOpencmopn 21354   Cn ccn 23232   ×t ctx 23568  NrmCVeccnv 30603   +𝑣 cpv 30604  BaseSetcba 30605  𝑣 cnsb 30608  normCVcnmcv 30609  IndMetcims 30610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cn 23235  df-cnp 23236  df-tx 23570  df-hmeo 23763  df-xms 24330  df-tms 24332  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620
This theorem is referenced by:  vmcn  30718  dipcn  30739  hlimadd  31212
  Copyright terms: Public domain W3C validator