MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vacn Structured version   Visualization version   GIF version

Theorem vacn 28465
Description: Vector addition is jointly continuous in both arguments. (Contributed by Jeff Hankins, 16-Jun-2009.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
vacn.c 𝐶 = (IndMet‘𝑈)
vacn.j 𝐽 = (MetOpen‘𝐶)
vacn.g 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
vacn (𝑈 ∈ NrmCVec → 𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))

Proof of Theorem vacn
Dummy variables 𝑠 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 vacn.g . . 3 𝐺 = ( +𝑣𝑈)
31, 2nvgf 28389 . 2 (𝑈 ∈ NrmCVec → 𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈))
4 rphalfcl 12410 . . . . . 6 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
54adantl 484 . . . . 5 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
6 simplll 773 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑈 ∈ NrmCVec)
7 vacn.c . . . . . . . . . . 11 𝐶 = (IndMet‘𝑈)
81, 7imsmet 28462 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
96, 8syl 17 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
10 simplrl 775 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (BaseSet‘𝑈))
1110adantr 483 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑥 ∈ (BaseSet‘𝑈))
12 simprl 769 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑧 ∈ (BaseSet‘𝑈))
13 metcl 22936 . . . . . . . . 9 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑧) ∈ ℝ)
149, 11, 12, 13syl3anc 1367 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥𝐶𝑧) ∈ ℝ)
15 simplrr 776 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (BaseSet‘𝑈))
1615adantr 483 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑦 ∈ (BaseSet‘𝑈))
17 simprr 771 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑤 ∈ (BaseSet‘𝑈))
18 metcl 22936 . . . . . . . . 9 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑦𝐶𝑤) ∈ ℝ)
199, 16, 17, 18syl3anc 1367 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑦𝐶𝑤) ∈ ℝ)
20 rpre 12391 . . . . . . . . 9 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
2120ad2antlr 725 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑟 ∈ ℝ)
22 lt2halves 11866 . . . . . . . 8 (((𝑥𝐶𝑧) ∈ ℝ ∧ (𝑦𝐶𝑤) ∈ ℝ ∧ 𝑟 ∈ ℝ) → (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟))
2314, 19, 21, 22syl3anc 1367 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟))
24 eqid 2821 . . . . . . . . . . . 12 ( −𝑣𝑈) = ( −𝑣𝑈)
251, 24nvmcl 28417 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥( −𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
266, 11, 12, 25syl3anc 1367 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥( −𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
271, 24nvmcl 28417 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑦( −𝑣𝑈)𝑤) ∈ (BaseSet‘𝑈))
286, 16, 17, 27syl3anc 1367 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑦( −𝑣𝑈)𝑤) ∈ (BaseSet‘𝑈))
29 eqid 2821 . . . . . . . . . . 11 (normCV𝑈) = (normCV𝑈)
301, 2, 29nvtri 28441 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑥( −𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈) ∧ (𝑦( −𝑣𝑈)𝑤) ∈ (BaseSet‘𝑈)) → ((normCV𝑈)‘((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤))) ≤ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)) + ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤))))
316, 26, 28, 30syl3anc 1367 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((normCV𝑈)‘((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤))) ≤ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)) + ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤))))
321, 2nvgcl 28391 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈))
336, 11, 16, 32syl3anc 1367 . . . . . . . . . . 11 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈))
341, 2nvgcl 28391 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈))
356, 12, 17, 34syl3anc 1367 . . . . . . . . . . 11 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈))
361, 24, 29, 7imsdval 28457 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈) ∧ (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) = ((normCV𝑈)‘((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤))))
376, 33, 35, 36syl3anc 1367 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) = ((normCV𝑈)‘((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤))))
381, 2, 24nvaddsub4 28428 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤)) = ((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤)))
396, 11, 16, 12, 17, 38syl122anc 1375 . . . . . . . . . . 11 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤)) = ((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤)))
4039fveq2d 6668 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((normCV𝑈)‘((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤))) = ((normCV𝑈)‘((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤))))
4137, 40eqtrd 2856 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) = ((normCV𝑈)‘((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤))))
421, 24, 29, 7imsdval 28457 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑧) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)))
436, 11, 12, 42syl3anc 1367 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥𝐶𝑧) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)))
441, 24, 29, 7imsdval 28457 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑦𝐶𝑤) = ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤)))
456, 16, 17, 44syl3anc 1367 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑦𝐶𝑤) = ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤)))
4643, 45oveq12d 7168 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) = (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)) + ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤))))
4731, 41, 463brtr4d 5090 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ≤ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)))
48 metcl 22936 . . . . . . . . . 10 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈) ∧ (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ∈ ℝ)
499, 33, 35, 48syl3anc 1367 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ∈ ℝ)
5014, 19readdcld 10664 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∈ ℝ)
51 lelttr 10725 . . . . . . . . 9 ((((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ∈ ℝ ∧ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ≤ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∧ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
5249, 50, 21, 51syl3anc 1367 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ≤ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∧ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
5347, 52mpand 693 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟 → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
5423, 53syld 47 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
5554ralrimivva 3191 . . . . 5 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → ∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
56 breq2 5062 . . . . . . . . 9 (𝑠 = (𝑟 / 2) → ((𝑥𝐶𝑧) < 𝑠 ↔ (𝑥𝐶𝑧) < (𝑟 / 2)))
57 breq2 5062 . . . . . . . . 9 (𝑠 = (𝑟 / 2) → ((𝑦𝐶𝑤) < 𝑠 ↔ (𝑦𝐶𝑤) < (𝑟 / 2)))
5856, 57anbi12d 632 . . . . . . . 8 (𝑠 = (𝑟 / 2) → (((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) ↔ ((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2))))
5958imbi1d 344 . . . . . . 7 (𝑠 = (𝑟 / 2) → ((((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟) ↔ (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)))
60592ralbidv 3199 . . . . . 6 (𝑠 = (𝑟 / 2) → (∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟) ↔ ∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)))
6160rspcev 3622 . . . . 5 (((𝑟 / 2) ∈ ℝ+ ∧ ∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
625, 55, 61syl2anc 586 . . . 4 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
6362ralrimiva 3182 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
6463ralrimivva 3191 . 2 (𝑈 ∈ NrmCVec → ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑈)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
651, 7imsxmet 28463 . . 3 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
66 vacn.j . . . 4 𝐽 = (MetOpen‘𝐶)
6766, 66, 66txmetcn 23152 . . 3 ((𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ 𝐶 ∈ (∞Met‘(BaseSet‘𝑈))) → (𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ (𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑈)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))))
6865, 65, 65, 67syl3anc 1367 . 2 (𝑈 ∈ NrmCVec → (𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ (𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑈)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))))
693, 64, 68mpbir2and 711 1 (𝑈 ∈ NrmCVec → 𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139   class class class wbr 5058   × cxp 5547  wf 6345  cfv 6349  (class class class)co 7150  cr 10530   + caddc 10534   < clt 10669  cle 10670   / cdiv 11291  2c2 11686  +crp 12383  ∞Metcxmet 20524  Metcmet 20525  MetOpencmopn 20529   Cn ccn 21826   ×t ctx 22162  NrmCVeccnv 28355   +𝑣 cpv 28356  BaseSetcba 28357  𝑣 cnsb 28360  normCVcnmcv 28361  IndMetcims 28362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cn 21829  df-cnp 21830  df-tx 22164  df-hmeo 22357  df-xms 22924  df-tms 22926  df-grpo 28264  df-gid 28265  df-ginv 28266  df-gdiv 28267  df-ablo 28316  df-vc 28330  df-nv 28363  df-va 28366  df-ba 28367  df-sm 28368  df-0v 28369  df-vs 28370  df-nmcv 28371  df-ims 28372
This theorem is referenced by:  vmcn  28470  dipcn  28491  hlimadd  28964
  Copyright terms: Public domain W3C validator