MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vacn Structured version   Visualization version   GIF version

Theorem vacn 28073
Description: Vector addition is jointly continuous in both arguments. (Contributed by Jeff Hankins, 16-Jun-2009.) (Revised by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
vacn.c 𝐶 = (IndMet‘𝑈)
vacn.j 𝐽 = (MetOpen‘𝐶)
vacn.g 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
vacn (𝑈 ∈ NrmCVec → 𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))

Proof of Theorem vacn
Dummy variables 𝑠 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2800 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 vacn.g . . 3 𝐺 = ( +𝑣𝑈)
31, 2nvgf 27997 . 2 (𝑈 ∈ NrmCVec → 𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈))
4 rphalfcl 12102 . . . . . 6 (𝑟 ∈ ℝ+ → (𝑟 / 2) ∈ ℝ+)
54adantl 474 . . . . 5 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 2) ∈ ℝ+)
6 simplll 792 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑈 ∈ NrmCVec)
7 vacn.c . . . . . . . . . . 11 𝐶 = (IndMet‘𝑈)
81, 7imsmet 28070 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
96, 8syl 17 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝐶 ∈ (Met‘(BaseSet‘𝑈)))
10 simplrl 796 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → 𝑥 ∈ (BaseSet‘𝑈))
1110adantr 473 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑥 ∈ (BaseSet‘𝑈))
12 simprl 788 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑧 ∈ (BaseSet‘𝑈))
13 metcl 22464 . . . . . . . . 9 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑧) ∈ ℝ)
149, 11, 12, 13syl3anc 1491 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥𝐶𝑧) ∈ ℝ)
15 simplrr 797 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (BaseSet‘𝑈))
1615adantr 473 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑦 ∈ (BaseSet‘𝑈))
17 simprr 790 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑤 ∈ (BaseSet‘𝑈))
18 metcl 22464 . . . . . . . . 9 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑦𝐶𝑤) ∈ ℝ)
199, 16, 17, 18syl3anc 1491 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑦𝐶𝑤) ∈ ℝ)
20 rpre 12081 . . . . . . . . 9 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
2120ad2antlr 719 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → 𝑟 ∈ ℝ)
22 lt2halves 11554 . . . . . . . 8 (((𝑥𝐶𝑧) ∈ ℝ ∧ (𝑦𝐶𝑤) ∈ ℝ ∧ 𝑟 ∈ ℝ) → (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟))
2314, 19, 21, 22syl3anc 1491 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟))
24 eqid 2800 . . . . . . . . . . . 12 ( −𝑣𝑈) = ( −𝑣𝑈)
251, 24nvmcl 28025 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥( −𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
266, 11, 12, 25syl3anc 1491 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥( −𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈))
271, 24nvmcl 28025 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑦( −𝑣𝑈)𝑤) ∈ (BaseSet‘𝑈))
286, 16, 17, 27syl3anc 1491 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑦( −𝑣𝑈)𝑤) ∈ (BaseSet‘𝑈))
29 eqid 2800 . . . . . . . . . . 11 (normCV𝑈) = (normCV𝑈)
301, 2, 29nvtri 28049 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝑥( −𝑣𝑈)𝑧) ∈ (BaseSet‘𝑈) ∧ (𝑦( −𝑣𝑈)𝑤) ∈ (BaseSet‘𝑈)) → ((normCV𝑈)‘((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤))) ≤ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)) + ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤))))
316, 26, 28, 30syl3anc 1491 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((normCV𝑈)‘((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤))) ≤ (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)) + ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤))))
321, 2nvgcl 27999 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) → (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈))
336, 11, 16, 32syl3anc 1491 . . . . . . . . . . 11 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈))
341, 2nvgcl 27999 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈))
356, 12, 17, 34syl3anc 1491 . . . . . . . . . . 11 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈))
361, 24, 29, 7imsdval 28065 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈) ∧ (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) = ((normCV𝑈)‘((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤))))
376, 33, 35, 36syl3anc 1491 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) = ((normCV𝑈)‘((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤))))
381, 2, 24nvaddsub4 28036 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈)) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤)) = ((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤)))
396, 11, 16, 12, 17, 38syl122anc 1499 . . . . . . . . . . 11 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤)) = ((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤)))
4039fveq2d 6416 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((normCV𝑈)‘((𝑥𝐺𝑦)( −𝑣𝑈)(𝑧𝐺𝑤))) = ((normCV𝑈)‘((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤))))
4137, 40eqtrd 2834 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) = ((normCV𝑈)‘((𝑥( −𝑣𝑈)𝑧)𝐺(𝑦( −𝑣𝑈)𝑤))))
421, 24, 29, 7imsdval 28065 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑧 ∈ (BaseSet‘𝑈)) → (𝑥𝐶𝑧) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)))
436, 11, 12, 42syl3anc 1491 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑥𝐶𝑧) = ((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)))
441, 24, 29, 7imsdval 28065 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈)) → (𝑦𝐶𝑤) = ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤)))
456, 16, 17, 44syl3anc 1491 . . . . . . . . . 10 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (𝑦𝐶𝑤) = ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤)))
4643, 45oveq12d 6897 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) = (((normCV𝑈)‘(𝑥( −𝑣𝑈)𝑧)) + ((normCV𝑈)‘(𝑦( −𝑣𝑈)𝑤))))
4731, 41, 463brtr4d 4876 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ≤ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)))
48 metcl 22464 . . . . . . . . . 10 ((𝐶 ∈ (Met‘(BaseSet‘𝑈)) ∧ (𝑥𝐺𝑦) ∈ (BaseSet‘𝑈) ∧ (𝑧𝐺𝑤) ∈ (BaseSet‘𝑈)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ∈ ℝ)
499, 33, 35, 48syl3anc 1491 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ∈ ℝ)
5014, 19readdcld 10359 . . . . . . . . 9 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∈ ℝ)
51 lelttr 10419 . . . . . . . . 9 ((((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ∈ ℝ ∧ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ≤ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∧ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
5249, 50, 21, 51syl3anc 1491 . . . . . . . 8 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → ((((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) ≤ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) ∧ ((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
5347, 52mpand 687 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑥𝐶𝑧) + (𝑦𝐶𝑤)) < 𝑟 → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
5423, 53syld 47 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) ∧ (𝑧 ∈ (BaseSet‘𝑈) ∧ 𝑤 ∈ (BaseSet‘𝑈))) → (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
5554ralrimivva 3153 . . . . 5 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → ∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
56 breq2 4848 . . . . . . . . 9 (𝑠 = (𝑟 / 2) → ((𝑥𝐶𝑧) < 𝑠 ↔ (𝑥𝐶𝑧) < (𝑟 / 2)))
57 breq2 4848 . . . . . . . . 9 (𝑠 = (𝑟 / 2) → ((𝑦𝐶𝑤) < 𝑠 ↔ (𝑦𝐶𝑤) < (𝑟 / 2)))
5856, 57anbi12d 625 . . . . . . . 8 (𝑠 = (𝑟 / 2) → (((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) ↔ ((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2))))
5958imbi1d 333 . . . . . . 7 (𝑠 = (𝑟 / 2) → ((((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟) ↔ (((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)))
60592ralbidv 3171 . . . . . 6 (𝑠 = (𝑟 / 2) → (∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟) ↔ ∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)))
6160rspcev 3498 . . . . 5 (((𝑟 / 2) ∈ ℝ+ ∧ ∀𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < (𝑟 / 2) ∧ (𝑦𝐶𝑤) < (𝑟 / 2)) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
625, 55, 61syl2anc 580 . . . 4 (((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) ∧ 𝑟 ∈ ℝ+) → ∃𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
6362ralrimiva 3148 . . 3 ((𝑈 ∈ NrmCVec ∧ (𝑥 ∈ (BaseSet‘𝑈) ∧ 𝑦 ∈ (BaseSet‘𝑈))) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
6463ralrimivva 3153 . 2 (𝑈 ∈ NrmCVec → ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑈)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))
651, 7imsxmet 28071 . . 3 (𝑈 ∈ NrmCVec → 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)))
66 vacn.j . . . 4 𝐽 = (MetOpen‘𝐶)
6766, 66, 66txmetcn 22680 . . 3 ((𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ 𝐶 ∈ (∞Met‘(BaseSet‘𝑈)) ∧ 𝐶 ∈ (∞Met‘(BaseSet‘𝑈))) → (𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ (𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑈)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))))
6865, 65, 65, 67syl3anc 1491 . 2 (𝑈 ∈ NrmCVec → (𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ↔ (𝐺:((BaseSet‘𝑈) × (BaseSet‘𝑈))⟶(BaseSet‘𝑈) ∧ ∀𝑥 ∈ (BaseSet‘𝑈)∀𝑦 ∈ (BaseSet‘𝑈)∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑧 ∈ (BaseSet‘𝑈)∀𝑤 ∈ (BaseSet‘𝑈)(((𝑥𝐶𝑧) < 𝑠 ∧ (𝑦𝐶𝑤) < 𝑠) → ((𝑥𝐺𝑦)𝐶(𝑧𝐺𝑤)) < 𝑟))))
693, 64, 68mpbir2and 705 1 (𝑈 ∈ NrmCVec → 𝐺 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3090  wrex 3091   class class class wbr 4844   × cxp 5311  wf 6098  cfv 6102  (class class class)co 6879  cr 10224   + caddc 10228   < clt 10364  cle 10365   / cdiv 10977  2c2 11367  +crp 12073  ∞Metcxmet 20052  Metcmet 20053  MetOpencmopn 20057   Cn ccn 21356   ×t ctx 21691  NrmCVeccnv 27963   +𝑣 cpv 27964  BaseSetcba 27965  𝑣 cnsb 27968  normCVcnmcv 27969  IndMetcims 27970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-inf2 8789  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303  ax-addf 10304  ax-mulf 10305
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-iin 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-se 5273  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-isom 6111  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-of 7132  df-om 7301  df-1st 7402  df-2nd 7403  df-supp 7534  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-2o 7801  df-oadd 7804  df-er 7983  df-map 8098  df-ixp 8150  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-fsupp 8519  df-fi 8560  df-sup 8591  df-inf 8592  df-oi 8658  df-card 9052  df-cda 9279  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-4 11377  df-5 11378  df-6 11379  df-7 11380  df-8 11381  df-9 11382  df-n0 11580  df-z 11666  df-dec 11783  df-uz 11930  df-q 12033  df-rp 12074  df-xneg 12192  df-xadd 12193  df-xmul 12194  df-icc 12430  df-fz 12580  df-fzo 12720  df-seq 13055  df-exp 13114  df-hash 13370  df-cj 14179  df-re 14180  df-im 14181  df-sqrt 14315  df-abs 14316  df-struct 16185  df-ndx 16186  df-slot 16187  df-base 16189  df-sets 16190  df-ress 16191  df-plusg 16279  df-mulr 16280  df-sca 16282  df-vsca 16283  df-ip 16284  df-tset 16285  df-ple 16286  df-ds 16288  df-hom 16290  df-cco 16291  df-rest 16397  df-topn 16398  df-0g 16416  df-gsum 16417  df-topgen 16418  df-pt 16419  df-prds 16422  df-xrs 16476  df-qtop 16481  df-imas 16482  df-xps 16484  df-mre 16560  df-mrc 16561  df-acs 16563  df-mgm 17556  df-sgrp 17598  df-mnd 17609  df-submnd 17650  df-mulg 17856  df-cntz 18061  df-cmn 18509  df-psmet 20059  df-xmet 20060  df-met 20061  df-bl 20062  df-mopn 20063  df-top 21026  df-topon 21043  df-topsp 21065  df-bases 21078  df-cn 21359  df-cnp 21360  df-tx 21693  df-hmeo 21886  df-xms 22452  df-tms 22454  df-grpo 27872  df-gid 27873  df-ginv 27874  df-gdiv 27875  df-ablo 27924  df-vc 27938  df-nv 27971  df-va 27974  df-ba 27975  df-sm 27976  df-0v 27977  df-vs 27978  df-nmcv 27979  df-ims 27980
This theorem is referenced by:  vmcn  28078  dipcn  28099  hlimadd  28574
  Copyright terms: Public domain W3C validator