MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1sub2 Structured version   Visualization version   GIF version

Theorem o1sub2 14974
Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
o1add2.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
o1add2.2 ((𝜑𝑥𝐴) → 𝐶𝑉)
o1add2.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
o1add2.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝑂(1))
Assertion
Ref Expression
o1sub2 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem o1sub2
StepHypRef Expression
1 o1add2.1 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
21ralrimiva 3180 . . . . . 6 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
3 dmmptg 6089 . . . . . 6 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
42, 3syl 17 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
5 o1add2.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
6 o1dm 14879 . . . . . 6 ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
75, 6syl 17 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
84, 7eqsstrrd 4004 . . . 4 (𝜑𝐴 ⊆ ℝ)
9 reex 10620 . . . . 5 ℝ ∈ V
109ssex 5216 . . . 4 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
118, 10syl 17 . . 3 (𝜑𝐴 ∈ V)
12 o1add2.2 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑉)
13 eqidd 2820 . . 3 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
14 eqidd 2820 . . 3 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
1511, 1, 12, 13, 14offval2 7418 . 2 (𝜑 → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (𝐵𝐶)))
16 o1add2.4 . . 3 (𝜑 → (𝑥𝐴𝐶) ∈ 𝑂(1))
17 o1sub 14964 . . 3 (((𝑥𝐴𝐵) ∈ 𝑂(1) ∧ (𝑥𝐴𝐶) ∈ 𝑂(1)) → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴𝐶)) ∈ 𝑂(1))
185, 16, 17syl2anc 586 . 2 (𝜑 → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴𝐶)) ∈ 𝑂(1))
1915, 18eqeltrrd 2912 1 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  wral 3136  Vcvv 3493  wss 3934  cmpt 5137  dom cdm 5548  (class class class)co 7148  f cof 7399  cr 10528  cmin 10862  𝑂(1)co1 14835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ico 12736  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-o1 14839
This theorem is referenced by:  mulog2sumlem3  26104  selberg2lem  26118  pntrmax  26132  pntrsumo1  26133  selberg3r  26137  pntrlog2bndlem4  26148
  Copyright terms: Public domain W3C validator