MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1sub2 Structured version   Visualization version   GIF version

Theorem o1sub2 15537
Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
o1add2.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
o1add2.2 ((𝜑𝑥𝐴) → 𝐶𝑉)
o1add2.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
o1add2.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝑂(1))
Assertion
Ref Expression
o1sub2 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem o1sub2
StepHypRef Expression
1 o1add2.1 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
21ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
3 dmmptg 6196 . . . . . 6 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
42, 3syl 17 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
5 o1add2.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
6 o1dm 15441 . . . . . 6 ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
75, 6syl 17 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
84, 7eqsstrrd 3966 . . . 4 (𝜑𝐴 ⊆ ℝ)
9 reex 11106 . . . . 5 ℝ ∈ V
109ssex 5263 . . . 4 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
118, 10syl 17 . . 3 (𝜑𝐴 ∈ V)
12 o1add2.2 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑉)
13 eqidd 2734 . . 3 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
14 eqidd 2734 . . 3 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
1511, 1, 12, 13, 14offval2 7638 . 2 (𝜑 → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (𝐵𝐶)))
16 o1add2.4 . . 3 (𝜑 → (𝑥𝐴𝐶) ∈ 𝑂(1))
17 o1sub 15527 . . 3 (((𝑥𝐴𝐵) ∈ 𝑂(1) ∧ (𝑥𝐴𝐶) ∈ 𝑂(1)) → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴𝐶)) ∈ 𝑂(1))
185, 16, 17syl2anc 584 . 2 (𝜑 → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴𝐶)) ∈ 𝑂(1))
1915, 18eqeltrrd 2834 1 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  wss 3898  cmpt 5176  dom cdm 5621  (class class class)co 7354  f cof 7616  cr 11014  cmin 11353  𝑂(1)co1 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-pm 8761  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-ico 13255  df-seq 13913  df-exp 13973  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-o1 15401
This theorem is referenced by:  mulog2sumlem3  27477  selberg2lem  27491  pntrmax  27505  pntrsumo1  27506  selberg3r  27510  pntrlog2bndlem4  27521
  Copyright terms: Public domain W3C validator