MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1mul2 Structured version   Visualization version   GIF version

Theorem o1mul2 15186
Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
o1add2.2 ((𝜑𝑥𝐴) → 𝐶𝑉)
o1add2.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
o1add2.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝑂(1))
Assertion
Ref Expression
o1mul2 (𝜑 → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem o1mul2
StepHypRef Expression
1 o1add2.1 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
21ralrimiva 3105 . . . . . 6 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
3 dmmptg 6105 . . . . . 6 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
42, 3syl 17 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
5 o1add2.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
6 o1dm 15091 . . . . . 6 ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
75, 6syl 17 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
84, 7eqsstrrd 3940 . . . 4 (𝜑𝐴 ⊆ ℝ)
9 reex 10820 . . . . 5 ℝ ∈ V
109ssex 5214 . . . 4 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
118, 10syl 17 . . 3 (𝜑𝐴 ∈ V)
12 o1add2.2 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑉)
13 eqidd 2738 . . 3 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
14 eqidd 2738 . . 3 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
1511, 1, 12, 13, 14offval2 7488 . 2 (𝜑 → ((𝑥𝐴𝐵) ∘f · (𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (𝐵 · 𝐶)))
16 o1add2.4 . . 3 (𝜑 → (𝑥𝐴𝐶) ∈ 𝑂(1))
17 o1mul 15176 . . 3 (((𝑥𝐴𝐵) ∈ 𝑂(1) ∧ (𝑥𝐴𝐶) ∈ 𝑂(1)) → ((𝑥𝐴𝐵) ∘f · (𝑥𝐴𝐶)) ∈ 𝑂(1))
185, 16, 17syl2anc 587 . 2 (𝜑 → ((𝑥𝐴𝐵) ∘f · (𝑥𝐴𝐶)) ∈ 𝑂(1))
1915, 18eqeltrrd 2839 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 · 𝐶)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408  wss 3866  cmpt 5135  dom cdm 5551  (class class class)co 7213  f cof 7467  cr 10728   · cmul 10734  𝑂(1)co1 15047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-ico 12941  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-o1 15051
This theorem is referenced by:  dchrvmasumlem2  26379  dchrvmasumiflem2  26383  dchrisum0fno1  26392  rpvmasum2  26393  dchrisum0lem1  26397  dchrisum0lem2a  26398  dchrisum0lem2  26399  dchrmusumlem  26403  rplogsum  26408  dirith2  26409  mulogsumlem  26412  mulog2sumlem2  26416  mulog2sumlem3  26417  vmalogdivsum2  26419  2vmadivsumlem  26421  selberglem1  26426  selberg3lem1  26438  selberg4lem1  26441  selberg4  26442  selberg3r  26450  selberg4r  26451  selberg34r  26452  pntrlog2bndlem2  26459  pntrlog2bndlem3  26460  pntrlog2bndlem4  26461
  Copyright terms: Public domain W3C validator