| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > o1mul2 | Structured version Visualization version GIF version | ||
| Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 26-May-2016.) |
| Ref | Expression |
|---|---|
| o1add2.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| o1add2.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
| o1add2.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) |
| o1add2.4 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) |
| Ref | Expression |
|---|---|
| o1mul2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∈ 𝑂(1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1add2.1 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 2 | 1 | ralrimiva 3125 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) |
| 3 | dmmptg 6194 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 5 | o1add2.3 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1)) | |
| 6 | o1dm 15439 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
| 8 | 4, 7 | eqsstrrd 3966 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 9 | reex 11104 | . . . . 5 ⊢ ℝ ∈ V | |
| 10 | 9 | ssex 5261 | . . . 4 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 12 | o1add2.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) | |
| 13 | eqidd 2734 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 14 | eqidd 2734 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
| 15 | 11, 1, 12, 13, 14 | offval2 7636 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f · (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵 · 𝐶))) |
| 16 | o1add2.4 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) | |
| 17 | o1mul 15524 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f · (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1)) | |
| 18 | 5, 16, 17 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f · (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1)) |
| 19 | 15, 18 | eqeltrrd 2834 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 · 𝐶)) ∈ 𝑂(1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⊆ wss 3898 ↦ cmpt 5174 dom cdm 5619 (class class class)co 7352 ∘f cof 7614 ℝcr 11012 · cmul 11018 𝑂(1)co1 15395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-ico 13253 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-o1 15399 |
| This theorem is referenced by: dchrvmasumlem2 27437 dchrvmasumiflem2 27441 dchrisum0fno1 27450 rpvmasum2 27451 dchrisum0lem1 27455 dchrisum0lem2a 27456 dchrisum0lem2 27457 dchrmusumlem 27461 rplogsum 27466 dirith2 27467 mulogsumlem 27470 mulog2sumlem2 27474 mulog2sumlem3 27475 vmalogdivsum2 27477 2vmadivsumlem 27479 selberglem1 27484 selberg3lem1 27496 selberg4lem1 27499 selberg4 27500 selberg3r 27508 selberg4r 27509 selberg34r 27510 pntrlog2bndlem2 27517 pntrlog2bndlem3 27518 pntrlog2bndlem4 27519 |
| Copyright terms: Public domain | W3C validator |