MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1dif Structured version   Visualization version   GIF version

Theorem o1dif 14974
Description: If the difference of two functions is eventually bounded, eventual boundedness of either one implies the other. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1dif.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
o1dif.2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
o1dif.3 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1))
Assertion
Ref Expression
o1dif (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐶) ∈ 𝑂(1)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem o1dif
StepHypRef Expression
1 o1dif.3 . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1))
2 o1sub 14960 . . . . 5 (((𝑥𝐴𝐵) ∈ 𝑂(1) ∧ (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1)) → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) ∈ 𝑂(1))
32expcom 414 . . . 4 ((𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1) → ((𝑥𝐴𝐵) ∈ 𝑂(1) → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) ∈ 𝑂(1)))
41, 3syl 17 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) ∈ 𝑂(1)))
5 o1dif.1 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6 o1dif.2 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
75, 6subcld 10985 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵𝐶) ∈ ℂ)
87ralrimiva 3179 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 (𝐵𝐶) ∈ ℂ)
9 dmmptg 6089 . . . . . . . . 9 (∀𝑥𝐴 (𝐵𝐶) ∈ ℂ → dom (𝑥𝐴 ↦ (𝐵𝐶)) = 𝐴)
108, 9syl 17 . . . . . . . 8 (𝜑 → dom (𝑥𝐴 ↦ (𝐵𝐶)) = 𝐴)
11 o1dm 14875 . . . . . . . . 9 ((𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1) → dom (𝑥𝐴 ↦ (𝐵𝐶)) ⊆ ℝ)
121, 11syl 17 . . . . . . . 8 (𝜑 → dom (𝑥𝐴 ↦ (𝐵𝐶)) ⊆ ℝ)
1310, 12eqsstrrd 4003 . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
14 reex 10616 . . . . . . . 8 ℝ ∈ V
1514ssex 5216 . . . . . . 7 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
1613, 15syl 17 . . . . . 6 (𝜑𝐴 ∈ V)
17 eqidd 2819 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
18 eqidd 2819 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) = (𝑥𝐴 ↦ (𝐵𝐶)))
1916, 5, 7, 17, 18offval2 7415 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) = (𝑥𝐴 ↦ (𝐵 − (𝐵𝐶))))
205, 6nncand 10990 . . . . . 6 ((𝜑𝑥𝐴) → (𝐵 − (𝐵𝐶)) = 𝐶)
2120mpteq2dva 5152 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (𝐵 − (𝐵𝐶))) = (𝑥𝐴𝐶))
2219, 21eqtrd 2853 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) = (𝑥𝐴𝐶))
2322eleq1d 2894 . . 3 (𝜑 → (((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) ∈ 𝑂(1) ↔ (𝑥𝐴𝐶) ∈ 𝑂(1)))
244, 23sylibd 240 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) → (𝑥𝐴𝐶) ∈ 𝑂(1)))
25 o1add 14958 . . . . 5 (((𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1) ∧ (𝑥𝐴𝐶) ∈ 𝑂(1)) → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) ∈ 𝑂(1))
2625ex 413 . . . 4 ((𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1) → ((𝑥𝐴𝐶) ∈ 𝑂(1) → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) ∈ 𝑂(1)))
271, 26syl 17 . . 3 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝑂(1) → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) ∈ 𝑂(1)))
28 eqidd 2819 . . . . . 6 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
2916, 7, 6, 18, 28offval2 7415 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) = (𝑥𝐴 ↦ ((𝐵𝐶) + 𝐶)))
305, 6npcand 10989 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐵𝐶) + 𝐶) = 𝐵)
3130mpteq2dva 5152 . . . . 5 (𝜑 → (𝑥𝐴 ↦ ((𝐵𝐶) + 𝐶)) = (𝑥𝐴𝐵))
3229, 31eqtrd 2853 . . . 4 (𝜑 → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) = (𝑥𝐴𝐵))
3332eleq1d 2894 . . 3 (𝜑 → (((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) ∈ 𝑂(1) ↔ (𝑥𝐴𝐵) ∈ 𝑂(1)))
3427, 33sylibd 240 . 2 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝑂(1) → (𝑥𝐴𝐵) ∈ 𝑂(1)))
3524, 34impbid 213 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐶) ∈ 𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  wss 3933  cmpt 5137  dom cdm 5548  (class class class)co 7145  f cof 7396  cc 10523  cr 10524   + caddc 10528  cmin 10858  𝑂(1)co1 14831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-o1 14835
This theorem is referenced by:  dchrmusum2  25997  dchrvmasumiflem2  26005  dchrisum0lem2a  26020  dchrisum0lem2  26021  rplogsum  26030  dirith2  26031  mulogsumlem  26034  mulogsum  26035  vmalogdivsum2  26041  vmalogdivsum  26042  2vmadivsumlem  26043  selberg3lem1  26060  selberg4lem1  26063  selberg4  26064  pntrlog2bndlem4  26083
  Copyright terms: Public domain W3C validator