MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1dif Structured version   Visualization version   GIF version

Theorem o1dif 15607
Description: If the difference of two functions is eventually bounded, eventual boundedness of either one implies the other. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1dif.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
o1dif.2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
o1dif.3 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1))
Assertion
Ref Expression
o1dif (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐶) ∈ 𝑂(1)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem o1dif
StepHypRef Expression
1 o1dif.3 . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1))
2 o1sub 15593 . . . . 5 (((𝑥𝐴𝐵) ∈ 𝑂(1) ∧ (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1)) → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) ∈ 𝑂(1))
32expcom 413 . . . 4 ((𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1) → ((𝑥𝐴𝐵) ∈ 𝑂(1) → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) ∈ 𝑂(1)))
41, 3syl 17 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) ∈ 𝑂(1)))
5 o1dif.1 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6 o1dif.2 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
75, 6subcld 11602 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵𝐶) ∈ ℂ)
87ralrimiva 3143 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 (𝐵𝐶) ∈ ℂ)
9 dmmptg 6246 . . . . . . . . 9 (∀𝑥𝐴 (𝐵𝐶) ∈ ℂ → dom (𝑥𝐴 ↦ (𝐵𝐶)) = 𝐴)
108, 9syl 17 . . . . . . . 8 (𝜑 → dom (𝑥𝐴 ↦ (𝐵𝐶)) = 𝐴)
11 o1dm 15507 . . . . . . . . 9 ((𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1) → dom (𝑥𝐴 ↦ (𝐵𝐶)) ⊆ ℝ)
121, 11syl 17 . . . . . . . 8 (𝜑 → dom (𝑥𝐴 ↦ (𝐵𝐶)) ⊆ ℝ)
1310, 12eqsstrrd 4019 . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
14 reex 11230 . . . . . . . 8 ℝ ∈ V
1514ssex 5321 . . . . . . 7 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
1613, 15syl 17 . . . . . 6 (𝜑𝐴 ∈ V)
17 eqidd 2729 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
18 eqidd 2729 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) = (𝑥𝐴 ↦ (𝐵𝐶)))
1916, 5, 7, 17, 18offval2 7705 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) = (𝑥𝐴 ↦ (𝐵 − (𝐵𝐶))))
205, 6nncand 11607 . . . . . 6 ((𝜑𝑥𝐴) → (𝐵 − (𝐵𝐶)) = 𝐶)
2120mpteq2dva 5248 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (𝐵 − (𝐵𝐶))) = (𝑥𝐴𝐶))
2219, 21eqtrd 2768 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) = (𝑥𝐴𝐶))
2322eleq1d 2814 . . 3 (𝜑 → (((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) ∈ 𝑂(1) ↔ (𝑥𝐴𝐶) ∈ 𝑂(1)))
244, 23sylibd 238 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) → (𝑥𝐴𝐶) ∈ 𝑂(1)))
25 o1add 15591 . . . . 5 (((𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1) ∧ (𝑥𝐴𝐶) ∈ 𝑂(1)) → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) ∈ 𝑂(1))
2625ex 412 . . . 4 ((𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1) → ((𝑥𝐴𝐶) ∈ 𝑂(1) → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) ∈ 𝑂(1)))
271, 26syl 17 . . 3 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝑂(1) → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) ∈ 𝑂(1)))
28 eqidd 2729 . . . . . 6 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
2916, 7, 6, 18, 28offval2 7705 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) = (𝑥𝐴 ↦ ((𝐵𝐶) + 𝐶)))
305, 6npcand 11606 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐵𝐶) + 𝐶) = 𝐵)
3130mpteq2dva 5248 . . . . 5 (𝜑 → (𝑥𝐴 ↦ ((𝐵𝐶) + 𝐶)) = (𝑥𝐴𝐵))
3229, 31eqtrd 2768 . . . 4 (𝜑 → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) = (𝑥𝐴𝐵))
3332eleq1d 2814 . . 3 (𝜑 → (((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) ∈ 𝑂(1) ↔ (𝑥𝐴𝐵) ∈ 𝑂(1)))
3427, 33sylibd 238 . 2 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝑂(1) → (𝑥𝐴𝐵) ∈ 𝑂(1)))
3524, 34impbid 211 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐶) ∈ 𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3058  Vcvv 3471  wss 3947  cmpt 5231  dom cdm 5678  (class class class)co 7420  f cof 7683  cc 11137  cr 11138   + caddc 11142  cmin 11475  𝑂(1)co1 15463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-ico 13363  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-o1 15467
This theorem is referenced by:  dchrmusum2  27440  dchrvmasumiflem2  27448  dchrisum0lem2a  27463  dchrisum0lem2  27464  rplogsum  27473  dirith2  27474  mulogsumlem  27477  mulogsum  27478  vmalogdivsum2  27484  vmalogdivsum  27485  2vmadivsumlem  27486  selberg3lem1  27503  selberg4lem1  27506  selberg4  27507  pntrlog2bndlem4  27526
  Copyright terms: Public domain W3C validator