| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > o1dif | Structured version Visualization version GIF version | ||
| Description: If the difference of two functions is eventually bounded, eventual boundedness of either one implies the other. (Contributed by Mario Carneiro, 26-May-2016.) |
| Ref | Expression |
|---|---|
| o1dif.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| o1dif.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| o1dif.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) |
| Ref | Expression |
|---|---|
| o1dif | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1dif.3 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) | |
| 2 | o1sub 15541 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1)) | |
| 3 | 2 | expcom 413 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1))) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1))) |
| 5 | o1dif.1 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 6 | o1dif.2 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
| 7 | 5, 6 | subcld 11493 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 − 𝐶) ∈ ℂ) |
| 8 | 7 | ralrimiva 3121 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐵 − 𝐶) ∈ ℂ) |
| 9 | dmmptg 6195 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ 𝐴 (𝐵 − 𝐶) ∈ ℂ → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = 𝐴) | |
| 10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = 𝐴) |
| 11 | o1dm 15455 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ⊆ ℝ) | |
| 12 | 1, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ⊆ ℝ) |
| 13 | 10, 12 | eqsstrrd 3973 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 14 | reex 11119 | . . . . . . . 8 ⊢ ℝ ∈ V | |
| 15 | 14 | ssex 5263 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
| 16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ V) |
| 17 | eqidd 2730 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 18 | eqidd 2730 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) | |
| 19 | 16, 5, 7, 17, 18 | offval2 7637 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) = (𝑥 ∈ 𝐴 ↦ (𝐵 − (𝐵 − 𝐶)))) |
| 20 | 5, 6 | nncand 11498 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 − (𝐵 − 𝐶)) = 𝐶) |
| 21 | 20 | mpteq2dva 5188 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − (𝐵 − 𝐶))) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| 22 | 19, 21 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| 23 | 22 | eleq1d 2813 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
| 24 | 4, 23 | sylibd 239 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
| 25 | o1add 15539 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1)) | |
| 26 | 25 | ex 412 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1))) |
| 27 | 1, 26 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1))) |
| 28 | eqidd 2730 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
| 29 | 16, 7, 6, 18, 28 | offval2 7637 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ ((𝐵 − 𝐶) + 𝐶))) |
| 30 | 5, 6 | npcand 11497 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐵 − 𝐶) + 𝐶) = 𝐵) |
| 31 | 30 | mpteq2dva 5188 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐵 − 𝐶) + 𝐶)) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 32 | 29, 31 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 33 | 32 | eleq1d 2813 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1))) |
| 34 | 27, 33 | sylibd 239 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1))) |
| 35 | 24, 34 | impbid 212 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ⊆ wss 3905 ↦ cmpt 5176 dom cdm 5623 (class class class)co 7353 ∘f cof 7615 ℂcc 11026 ℝcr 11027 + caddc 11031 − cmin 11365 𝑂(1)co1 15411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-ico 13272 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-o1 15415 |
| This theorem is referenced by: dchrmusum2 27421 dchrvmasumiflem2 27429 dchrisum0lem2a 27444 dchrisum0lem2 27445 rplogsum 27454 dirith2 27455 mulogsumlem 27458 mulogsum 27459 vmalogdivsum2 27465 vmalogdivsum 27466 2vmadivsumlem 27467 selberg3lem1 27484 selberg4lem1 27487 selberg4 27488 pntrlog2bndlem4 27507 |
| Copyright terms: Public domain | W3C validator |