MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1dif Structured version   Visualization version   GIF version

Theorem o1dif 15596
Description: If the difference of two functions is eventually bounded, eventual boundedness of either one implies the other. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1dif.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
o1dif.2 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
o1dif.3 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1))
Assertion
Ref Expression
o1dif (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐶) ∈ 𝑂(1)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem o1dif
StepHypRef Expression
1 o1dif.3 . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1))
2 o1sub 15582 . . . . 5 (((𝑥𝐴𝐵) ∈ 𝑂(1) ∧ (𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1)) → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) ∈ 𝑂(1))
32expcom 413 . . . 4 ((𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1) → ((𝑥𝐴𝐵) ∈ 𝑂(1) → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) ∈ 𝑂(1)))
41, 3syl 17 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) ∈ 𝑂(1)))
5 o1dif.1 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6 o1dif.2 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
75, 6subcld 11533 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵𝐶) ∈ ℂ)
87ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 (𝐵𝐶) ∈ ℂ)
9 dmmptg 6215 . . . . . . . . 9 (∀𝑥𝐴 (𝐵𝐶) ∈ ℂ → dom (𝑥𝐴 ↦ (𝐵𝐶)) = 𝐴)
108, 9syl 17 . . . . . . . 8 (𝜑 → dom (𝑥𝐴 ↦ (𝐵𝐶)) = 𝐴)
11 o1dm 15496 . . . . . . . . 9 ((𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1) → dom (𝑥𝐴 ↦ (𝐵𝐶)) ⊆ ℝ)
121, 11syl 17 . . . . . . . 8 (𝜑 → dom (𝑥𝐴 ↦ (𝐵𝐶)) ⊆ ℝ)
1310, 12eqsstrrd 3982 . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
14 reex 11159 . . . . . . . 8 ℝ ∈ V
1514ssex 5276 . . . . . . 7 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
1613, 15syl 17 . . . . . 6 (𝜑𝐴 ∈ V)
17 eqidd 2730 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
18 eqidd 2730 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (𝐵𝐶)) = (𝑥𝐴 ↦ (𝐵𝐶)))
1916, 5, 7, 17, 18offval2 7673 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) = (𝑥𝐴 ↦ (𝐵 − (𝐵𝐶))))
205, 6nncand 11538 . . . . . 6 ((𝜑𝑥𝐴) → (𝐵 − (𝐵𝐶)) = 𝐶)
2120mpteq2dva 5200 . . . . 5 (𝜑 → (𝑥𝐴 ↦ (𝐵 − (𝐵𝐶))) = (𝑥𝐴𝐶))
2219, 21eqtrd 2764 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) = (𝑥𝐴𝐶))
2322eleq1d 2813 . . 3 (𝜑 → (((𝑥𝐴𝐵) ∘f − (𝑥𝐴 ↦ (𝐵𝐶))) ∈ 𝑂(1) ↔ (𝑥𝐴𝐶) ∈ 𝑂(1)))
244, 23sylibd 239 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) → (𝑥𝐴𝐶) ∈ 𝑂(1)))
25 o1add 15580 . . . . 5 (((𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1) ∧ (𝑥𝐴𝐶) ∈ 𝑂(1)) → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) ∈ 𝑂(1))
2625ex 412 . . . 4 ((𝑥𝐴 ↦ (𝐵𝐶)) ∈ 𝑂(1) → ((𝑥𝐴𝐶) ∈ 𝑂(1) → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) ∈ 𝑂(1)))
271, 26syl 17 . . 3 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝑂(1) → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) ∈ 𝑂(1)))
28 eqidd 2730 . . . . . 6 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
2916, 7, 6, 18, 28offval2 7673 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) = (𝑥𝐴 ↦ ((𝐵𝐶) + 𝐶)))
305, 6npcand 11537 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐵𝐶) + 𝐶) = 𝐵)
3130mpteq2dva 5200 . . . . 5 (𝜑 → (𝑥𝐴 ↦ ((𝐵𝐶) + 𝐶)) = (𝑥𝐴𝐵))
3229, 31eqtrd 2764 . . . 4 (𝜑 → ((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) = (𝑥𝐴𝐵))
3332eleq1d 2813 . . 3 (𝜑 → (((𝑥𝐴 ↦ (𝐵𝐶)) ∘f + (𝑥𝐴𝐶)) ∈ 𝑂(1) ↔ (𝑥𝐴𝐵) ∈ 𝑂(1)))
3427, 33sylibd 239 . 2 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝑂(1) → (𝑥𝐴𝐵) ∈ 𝑂(1)))
3524, 34impbid 212 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴𝐶) ∈ 𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914  cmpt 5188  dom cdm 5638  (class class class)co 7387  f cof 7651  cc 11066  cr 11067   + caddc 11071  cmin 11405  𝑂(1)co1 15452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-o1 15456
This theorem is referenced by:  dchrmusum2  27405  dchrvmasumiflem2  27413  dchrisum0lem2a  27428  dchrisum0lem2  27429  rplogsum  27438  dirith2  27439  mulogsumlem  27442  mulogsum  27443  vmalogdivsum2  27449  vmalogdivsum  27450  2vmadivsumlem  27451  selberg3lem1  27468  selberg4lem1  27471  selberg4  27472  pntrlog2bndlem4  27491
  Copyright terms: Public domain W3C validator