Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > o1dif | Structured version Visualization version GIF version |
Description: If the difference of two functions is eventually bounded, eventual boundedness of either one implies the other. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
o1dif.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
o1dif.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
o1dif.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) |
Ref | Expression |
---|---|
o1dif | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o1dif.3 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) | |
2 | o1sub 15253 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1)) | |
3 | 2 | expcom 413 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1))) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1))) |
5 | o1dif.1 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
6 | o1dif.2 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
7 | 5, 6 | subcld 11262 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 − 𝐶) ∈ ℂ) |
8 | 7 | ralrimiva 3107 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐵 − 𝐶) ∈ ℂ) |
9 | dmmptg 6134 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ 𝐴 (𝐵 − 𝐶) ∈ ℂ → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = 𝐴) | |
10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = 𝐴) |
11 | o1dm 15167 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ⊆ ℝ) | |
12 | 1, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ⊆ ℝ) |
13 | 10, 12 | eqsstrrd 3956 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
14 | reex 10893 | . . . . . . . 8 ⊢ ℝ ∈ V | |
15 | 14 | ssex 5240 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ V) |
17 | eqidd 2739 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
18 | eqidd 2739 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) | |
19 | 16, 5, 7, 17, 18 | offval2 7531 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) = (𝑥 ∈ 𝐴 ↦ (𝐵 − (𝐵 − 𝐶)))) |
20 | 5, 6 | nncand 11267 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 − (𝐵 − 𝐶)) = 𝐶) |
21 | 20 | mpteq2dva 5170 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − (𝐵 − 𝐶))) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
22 | 19, 21 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
23 | 22 | eleq1d 2823 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
24 | 4, 23 | sylibd 238 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
25 | o1add 15251 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1)) | |
26 | 25 | ex 412 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1))) |
27 | 1, 26 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1))) |
28 | eqidd 2739 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
29 | 16, 7, 6, 18, 28 | offval2 7531 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ ((𝐵 − 𝐶) + 𝐶))) |
30 | 5, 6 | npcand 11266 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐵 − 𝐶) + 𝐶) = 𝐵) |
31 | 30 | mpteq2dva 5170 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐵 − 𝐶) + 𝐶)) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
32 | 29, 31 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
33 | 32 | eleq1d 2823 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1))) |
34 | 27, 33 | sylibd 238 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1))) |
35 | 24, 34 | impbid 211 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ↦ cmpt 5153 dom cdm 5580 (class class class)co 7255 ∘f cof 7509 ℂcc 10800 ℝcr 10801 + caddc 10805 − cmin 11135 𝑂(1)co1 15123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-o1 15127 |
This theorem is referenced by: dchrmusum2 26547 dchrvmasumiflem2 26555 dchrisum0lem2a 26570 dchrisum0lem2 26571 rplogsum 26580 dirith2 26581 mulogsumlem 26584 mulogsum 26585 vmalogdivsum2 26591 vmalogdivsum 26592 2vmadivsumlem 26593 selberg3lem1 26610 selberg4lem1 26613 selberg4 26614 pntrlog2bndlem4 26633 |
Copyright terms: Public domain | W3C validator |