| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > o1dif | Structured version Visualization version GIF version | ||
| Description: If the difference of two functions is eventually bounded, eventual boundedness of either one implies the other. (Contributed by Mario Carneiro, 26-May-2016.) |
| Ref | Expression |
|---|---|
| o1dif.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| o1dif.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| o1dif.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) |
| Ref | Expression |
|---|---|
| o1dif | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1dif.3 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) | |
| 2 | o1sub 15525 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1)) | |
| 3 | 2 | expcom 413 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1))) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1))) |
| 5 | o1dif.1 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 6 | o1dif.2 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
| 7 | 5, 6 | subcld 11479 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 − 𝐶) ∈ ℂ) |
| 8 | 7 | ralrimiva 3125 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐵 − 𝐶) ∈ ℂ) |
| 9 | dmmptg 6194 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ 𝐴 (𝐵 − 𝐶) ∈ ℂ → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = 𝐴) | |
| 10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = 𝐴) |
| 11 | o1dm 15439 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ⊆ ℝ) | |
| 12 | 1, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ⊆ ℝ) |
| 13 | 10, 12 | eqsstrrd 3966 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 14 | reex 11104 | . . . . . . . 8 ⊢ ℝ ∈ V | |
| 15 | 14 | ssex 5261 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
| 16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ V) |
| 17 | eqidd 2734 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 18 | eqidd 2734 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) | |
| 19 | 16, 5, 7, 17, 18 | offval2 7636 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) = (𝑥 ∈ 𝐴 ↦ (𝐵 − (𝐵 − 𝐶)))) |
| 20 | 5, 6 | nncand 11484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 − (𝐵 − 𝐶)) = 𝐶) |
| 21 | 20 | mpteq2dva 5186 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − (𝐵 − 𝐶))) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| 22 | 19, 21 | eqtrd 2768 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| 23 | 22 | eleq1d 2818 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
| 24 | 4, 23 | sylibd 239 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
| 25 | o1add 15523 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1)) | |
| 26 | 25 | ex 412 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1))) |
| 27 | 1, 26 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1))) |
| 28 | eqidd 2734 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
| 29 | 16, 7, 6, 18, 28 | offval2 7636 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ ((𝐵 − 𝐶) + 𝐶))) |
| 30 | 5, 6 | npcand 11483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐵 − 𝐶) + 𝐶) = 𝐵) |
| 31 | 30 | mpteq2dva 5186 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐵 − 𝐶) + 𝐶)) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 32 | 29, 31 | eqtrd 2768 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 33 | 32 | eleq1d 2818 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1))) |
| 34 | 27, 33 | sylibd 239 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1))) |
| 35 | 24, 34 | impbid 212 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⊆ wss 3898 ↦ cmpt 5174 dom cdm 5619 (class class class)co 7352 ∘f cof 7614 ℂcc 11011 ℝcr 11012 + caddc 11016 − cmin 11351 𝑂(1)co1 15395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-ico 13253 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-o1 15399 |
| This theorem is referenced by: dchrmusum2 27433 dchrvmasumiflem2 27441 dchrisum0lem2a 27456 dchrisum0lem2 27457 rplogsum 27466 dirith2 27467 mulogsumlem 27470 mulogsum 27471 vmalogdivsum2 27477 vmalogdivsum 27478 2vmadivsumlem 27479 selberg3lem1 27496 selberg4lem1 27499 selberg4 27500 pntrlog2bndlem4 27519 |
| Copyright terms: Public domain | W3C validator |