![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > o1dif | Structured version Visualization version GIF version |
Description: If the difference of two functions is eventually bounded, eventual boundedness of either one implies the other. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
o1dif.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
o1dif.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
o1dif.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) |
Ref | Expression |
---|---|
o1dif | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o1dif.3 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) | |
2 | o1sub 15556 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1)) | |
3 | 2 | expcom 414 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1))) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1))) |
5 | o1dif.1 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
6 | o1dif.2 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
7 | 5, 6 | subcld 11567 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 − 𝐶) ∈ ℂ) |
8 | 7 | ralrimiva 3146 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐵 − 𝐶) ∈ ℂ) |
9 | dmmptg 6238 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ 𝐴 (𝐵 − 𝐶) ∈ ℂ → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = 𝐴) | |
10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = 𝐴) |
11 | o1dm 15470 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ⊆ ℝ) | |
12 | 1, 11 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ⊆ ℝ) |
13 | 10, 12 | eqsstrrd 4020 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
14 | reex 11197 | . . . . . . . 8 ⊢ ℝ ∈ V | |
15 | 14 | ssex 5320 | . . . . . . 7 ⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ V) |
17 | eqidd 2733 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
18 | eqidd 2733 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) | |
19 | 16, 5, 7, 17, 18 | offval2 7686 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) = (𝑥 ∈ 𝐴 ↦ (𝐵 − (𝐵 − 𝐶)))) |
20 | 5, 6 | nncand 11572 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 − (𝐵 − 𝐶)) = 𝐶) |
21 | 20 | mpteq2dva 5247 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 − (𝐵 − 𝐶))) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
22 | 19, 21 | eqtrd 2772 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
23 | 22 | eleq1d 2818 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝐵) ∘f − (𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶))) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
24 | 4, 23 | sylibd 238 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
25 | o1add 15554 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1)) | |
26 | 25 | ex 413 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1))) |
27 | 1, 26 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1))) |
28 | eqidd 2733 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
29 | 16, 7, 6, 18, 28 | offval2 7686 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ ((𝐵 − 𝐶) + 𝐶))) |
30 | 5, 6 | npcand 11571 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐵 − 𝐶) + 𝐶) = 𝐵) |
31 | 30 | mpteq2dva 5247 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐵 − 𝐶) + 𝐶)) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
32 | 29, 31 | eqtrd 2772 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
33 | 32 | eleq1d 2818 | . . 3 ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ (𝐵 − 𝐶)) ∘f + (𝑥 ∈ 𝐴 ↦ 𝐶)) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1))) |
34 | 27, 33 | sylibd 238 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1))) |
35 | 24, 34 | impbid 211 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 ⊆ wss 3947 ↦ cmpt 5230 dom cdm 5675 (class class class)co 7405 ∘f cof 7664 ℂcc 11104 ℝcr 11105 + caddc 11109 − cmin 11440 𝑂(1)co1 15426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-ico 13326 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-o1 15430 |
This theorem is referenced by: dchrmusum2 26986 dchrvmasumiflem2 26994 dchrisum0lem2a 27009 dchrisum0lem2 27010 rplogsum 27019 dirith2 27020 mulogsumlem 27023 mulogsum 27024 vmalogdivsum2 27030 vmalogdivsum 27031 2vmadivsumlem 27032 selberg3lem1 27049 selberg4lem1 27052 selberg4 27053 pntrlog2bndlem4 27072 |
Copyright terms: Public domain | W3C validator |