| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > o1bdd | Structured version Visualization version GIF version | ||
| Description: The defining property of an eventually bounded function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| o1bdd | ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → 𝐹 ∈ 𝑂(1)) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ) | |
| 3 | fdm 6697 | . . . . 5 ⊢ (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → dom 𝐹 = 𝐴) |
| 5 | o1dm 15496 | . . . . 5 ⊢ (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → dom 𝐹 ⊆ ℝ) |
| 7 | 4, 6 | eqsstrrd 3982 | . . 3 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℝ) |
| 8 | elo12 15493 | . . 3 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) | |
| 9 | 2, 7, 8 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
| 10 | 1, 9 | mpbid 232 | 1 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 ℂcc 11066 ℝcr 11067 ≤ cle 11209 abscabs 15200 𝑂(1)co1 15452 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ico 13312 df-o1 15456 |
| This theorem is referenced by: o1of2 15579 o1rlimmul 15585 o1cxp 26885 |
| Copyright terms: Public domain | W3C validator |