| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > o1bdd | Structured version Visualization version GIF version | ||
| Description: The defining property of an eventually bounded function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| o1bdd | ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → 𝐹 ∈ 𝑂(1)) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ) | |
| 3 | fdm 6679 | . . . . 5 ⊢ (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → dom 𝐹 = 𝐴) |
| 5 | o1dm 15472 | . . . . 5 ⊢ (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → dom 𝐹 ⊆ ℝ) |
| 7 | 4, 6 | eqsstrrd 3979 | . . 3 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℝ) |
| 8 | elo12 15469 | . . 3 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) | |
| 9 | 2, 7, 8 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
| 10 | 1, 9 | mpbid 232 | 1 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3911 class class class wbr 5102 dom cdm 5631 ⟶wf 6495 ‘cfv 6499 ℂcc 11042 ℝcr 11043 ≤ cle 11185 abscabs 15176 𝑂(1)co1 15428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-ico 13288 df-o1 15432 |
| This theorem is referenced by: o1of2 15555 o1rlimmul 15561 o1cxp 26918 |
| Copyright terms: Public domain | W3C validator |