MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1bdd Structured version   Visualization version   GIF version

Theorem o1bdd 14603
Description: The defining property of an eventually bounded function. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
o1bdd ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝑚,𝐹,𝑥,𝑦

Proof of Theorem o1bdd
StepHypRef Expression
1 simpl 475 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → 𝐹 ∈ 𝑂(1))
2 simpr 478 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ)
3 fdm 6264 . . . . 5 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
43adantl 474 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → dom 𝐹 = 𝐴)
5 o1dm 14602 . . . . 5 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
65adantr 473 . . . 4 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → dom 𝐹 ⊆ ℝ)
74, 6eqsstr3d 3836 . . 3 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℝ)
8 elo12 14599 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
92, 7, 8syl2anc 580 . 2 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚)))
101, 9mpbid 224 1 ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐴 (𝑥𝑦 → (abs‘(𝐹𝑦)) ≤ 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3089  wrex 3090  wss 3769   class class class wbr 4843  dom cdm 5312  wf 6097  cfv 6101  cc 10222  cr 10223  cle 10364  abscabs 14315  𝑂(1)co1 14558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-pre-lttri 10298  ax-pre-lttrn 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-er 7982  df-pm 8098  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-ico 12430  df-o1 14562
This theorem is referenced by:  o1of2  14684  o1rlimmul  14690  o1cxp  25053
  Copyright terms: Public domain W3C validator