| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > o1bdd | Structured version Visualization version GIF version | ||
| Description: The defining property of an eventually bounded function. (Contributed by Mario Carneiro, 15-Sep-2014.) |
| Ref | Expression |
|---|---|
| o1bdd | ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → 𝐹 ∈ 𝑂(1)) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → 𝐹:𝐴⟶ℂ) | |
| 3 | fdm 6744 | . . . . 5 ⊢ (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → dom 𝐹 = 𝐴) |
| 5 | o1dm 15567 | . . . . 5 ⊢ (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ) | |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → dom 𝐹 ⊆ ℝ) |
| 7 | 4, 6 | eqsstrrd 4018 | . . 3 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → 𝐴 ⊆ ℝ) |
| 8 | elo12 15564 | . . 3 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) | |
| 9 | 2, 7, 8 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚))) |
| 10 | 1, 9 | mpbid 232 | 1 ⊢ ((𝐹 ∈ 𝑂(1) ∧ 𝐹:𝐴⟶ℂ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (abs‘(𝐹‘𝑦)) ≤ 𝑚)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 ⊆ wss 3950 class class class wbr 5142 dom cdm 5684 ⟶wf 6556 ‘cfv 6560 ℂcc 11154 ℝcr 11155 ≤ cle 11297 abscabs 15274 𝑂(1)co1 15523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-ico 13394 df-o1 15527 |
| This theorem is referenced by: o1of2 15650 o1rlimmul 15656 o1cxp 27019 |
| Copyright terms: Public domain | W3C validator |