MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1co Structured version   Visualization version   GIF version

Theorem o1co 15512
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
o1co.1 (𝜑𝐹:𝐴⟶ℂ)
o1co.2 (𝜑𝐹 ∈ 𝑂(1))
o1co.3 (𝜑𝐺:𝐵𝐴)
o1co.4 (𝜑𝐵 ⊆ ℝ)
o1co.5 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)))
Assertion
Ref Expression
o1co (𝜑 → (𝐹𝐺) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝑚,𝐹,𝑥,𝑦   𝑚,𝐺,𝑥,𝑦   𝜑,𝑚,𝑥,𝑦   𝐵,𝑚,𝑥,𝑦

Proof of Theorem o1co
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1co.2 . . . 4 (𝜑𝐹 ∈ 𝑂(1))
2 o1co.1 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
32fdmd 6666 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
4 o1dm 15456 . . . . . . 7 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
51, 4syl 17 . . . . . 6 (𝜑 → dom 𝐹 ⊆ ℝ)
63, 5eqsstrrd 3973 . . . . 5 (𝜑𝐴 ⊆ ℝ)
7 elo12 15453 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)))
82, 6, 7syl2anc 584 . . . 4 (𝜑 → (𝐹 ∈ 𝑂(1) ↔ ∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)))
91, 8mpbid 232 . . 3 (𝜑 → ∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛))
10 o1co.5 . . . . 5 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)))
11 reeanv 3201 . . . . . 6 (∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ↔ (∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)))
12 o1co.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐺:𝐵𝐴)
1312ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) → 𝐺:𝐵𝐴)
1413ffvelcdmda 7022 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ 𝑦𝐵) → (𝐺𝑦) ∈ 𝐴)
15 breq2 5099 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑦) → (𝑚𝑧𝑚 ≤ (𝐺𝑦)))
16 2fveq3 6831 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐺𝑦) → (abs‘(𝐹𝑧)) = (abs‘(𝐹‘(𝐺𝑦))))
1716breq1d 5105 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑦) → ((abs‘(𝐹𝑧)) ≤ 𝑛 ↔ (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
1815, 17imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐺𝑦) → ((𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) ↔ (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛)))
1918rspcva 3577 . . . . . . . . . . . . . . 15 (((𝐺𝑦) ∈ 𝐴 ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2014, 19sylan 580 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ 𝑦𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2120an32s 652 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2213adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → 𝐺:𝐵𝐴)
23 fvco3 6926 . . . . . . . . . . . . . . . 16 ((𝐺:𝐵𝐴𝑦𝐵) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
2422, 23sylan 580 . . . . . . . . . . . . . . 15 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
2524fveq2d 6830 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → (abs‘((𝐹𝐺)‘𝑦)) = (abs‘(𝐹‘(𝐺𝑦))))
2625breq1d 5105 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → ((abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛 ↔ (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2721, 26sylibrd 259 . . . . . . . . . . . 12 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → (𝑚 ≤ (𝐺𝑦) → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛))
2827imim2d 57 . . . . . . . . . . 11 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → ((𝑥𝑦𝑚 ≤ (𝐺𝑦)) → (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
2928ralimdva 3141 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) → ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3029expimpd 453 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) → ((∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) ∧ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦))) → ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3130ancomsd 465 . . . . . . . 8 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) → ((∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3231reximdva 3142 . . . . . . 7 (((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑛 ∈ ℝ (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3332reximdva 3142 . . . . . 6 ((𝜑𝑚 ∈ ℝ) → (∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3411, 33biimtrrid 243 . . . . 5 ((𝜑𝑚 ∈ ℝ) → ((∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3510, 34mpand 695 . . . 4 ((𝜑𝑚 ∈ ℝ) → (∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3635rexlimdva 3130 . . 3 (𝜑 → (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
379, 36mpd 15 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛))
38 fco 6680 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐵𝐴) → (𝐹𝐺):𝐵⟶ℂ)
392, 12, 38syl2anc 584 . . 3 (𝜑 → (𝐹𝐺):𝐵⟶ℂ)
40 o1co.4 . . 3 (𝜑𝐵 ⊆ ℝ)
41 elo12 15453 . . 3 (((𝐹𝐺):𝐵⟶ℂ ∧ 𝐵 ⊆ ℝ) → ((𝐹𝐺) ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
4239, 40, 41syl2anc 584 . 2 (𝜑 → ((𝐹𝐺) ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
4337, 42mpbird 257 1 (𝜑 → (𝐹𝐺) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3905   class class class wbr 5095  dom cdm 5623  ccom 5627  wf 6482  cfv 6486  cc 11026  cr 11027  cle 11169  abscabs 15160  𝑂(1)co1 15412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-ico 13273  df-o1 15416
This theorem is referenced by:  o1compt  15513
  Copyright terms: Public domain W3C validator