MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1co Structured version   Visualization version   GIF version

Theorem o1co 15559
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
o1co.1 (𝜑𝐹:𝐴⟶ℂ)
o1co.2 (𝜑𝐹 ∈ 𝑂(1))
o1co.3 (𝜑𝐺:𝐵𝐴)
o1co.4 (𝜑𝐵 ⊆ ℝ)
o1co.5 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)))
Assertion
Ref Expression
o1co (𝜑 → (𝐹𝐺) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝑚,𝐹,𝑥,𝑦   𝑚,𝐺,𝑥,𝑦   𝜑,𝑚,𝑥,𝑦   𝐵,𝑚,𝑥,𝑦

Proof of Theorem o1co
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1co.2 . . . 4 (𝜑𝐹 ∈ 𝑂(1))
2 o1co.1 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
32fdmd 6701 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
4 o1dm 15503 . . . . . . 7 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
51, 4syl 17 . . . . . 6 (𝜑 → dom 𝐹 ⊆ ℝ)
63, 5eqsstrrd 3985 . . . . 5 (𝜑𝐴 ⊆ ℝ)
7 elo12 15500 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)))
82, 6, 7syl2anc 584 . . . 4 (𝜑 → (𝐹 ∈ 𝑂(1) ↔ ∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)))
91, 8mpbid 232 . . 3 (𝜑 → ∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛))
10 o1co.5 . . . . 5 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)))
11 reeanv 3210 . . . . . 6 (∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ↔ (∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)))
12 o1co.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐺:𝐵𝐴)
1312ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) → 𝐺:𝐵𝐴)
1413ffvelcdmda 7059 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ 𝑦𝐵) → (𝐺𝑦) ∈ 𝐴)
15 breq2 5114 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑦) → (𝑚𝑧𝑚 ≤ (𝐺𝑦)))
16 2fveq3 6866 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐺𝑦) → (abs‘(𝐹𝑧)) = (abs‘(𝐹‘(𝐺𝑦))))
1716breq1d 5120 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑦) → ((abs‘(𝐹𝑧)) ≤ 𝑛 ↔ (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
1815, 17imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐺𝑦) → ((𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) ↔ (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛)))
1918rspcva 3589 . . . . . . . . . . . . . . 15 (((𝐺𝑦) ∈ 𝐴 ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2014, 19sylan 580 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ 𝑦𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2120an32s 652 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2213adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → 𝐺:𝐵𝐴)
23 fvco3 6963 . . . . . . . . . . . . . . . 16 ((𝐺:𝐵𝐴𝑦𝐵) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
2422, 23sylan 580 . . . . . . . . . . . . . . 15 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
2524fveq2d 6865 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → (abs‘((𝐹𝐺)‘𝑦)) = (abs‘(𝐹‘(𝐺𝑦))))
2625breq1d 5120 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → ((abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛 ↔ (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2721, 26sylibrd 259 . . . . . . . . . . . 12 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → (𝑚 ≤ (𝐺𝑦) → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛))
2827imim2d 57 . . . . . . . . . . 11 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → ((𝑥𝑦𝑚 ≤ (𝐺𝑦)) → (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
2928ralimdva 3146 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) → ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3029expimpd 453 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) → ((∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) ∧ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦))) → ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3130ancomsd 465 . . . . . . . 8 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) → ((∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3231reximdva 3147 . . . . . . 7 (((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑛 ∈ ℝ (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3332reximdva 3147 . . . . . 6 ((𝜑𝑚 ∈ ℝ) → (∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3411, 33biimtrrid 243 . . . . 5 ((𝜑𝑚 ∈ ℝ) → ((∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3510, 34mpand 695 . . . 4 ((𝜑𝑚 ∈ ℝ) → (∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3635rexlimdva 3135 . . 3 (𝜑 → (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
379, 36mpd 15 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛))
38 fco 6715 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐵𝐴) → (𝐹𝐺):𝐵⟶ℂ)
392, 12, 38syl2anc 584 . . 3 (𝜑 → (𝐹𝐺):𝐵⟶ℂ)
40 o1co.4 . . 3 (𝜑𝐵 ⊆ ℝ)
41 elo12 15500 . . 3 (((𝐹𝐺):𝐵⟶ℂ ∧ 𝐵 ⊆ ℝ) → ((𝐹𝐺) ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
4239, 40, 41syl2anc 584 . 2 (𝜑 → ((𝐹𝐺) ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
4337, 42mpbird 257 1 (𝜑 → (𝐹𝐺) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  dom cdm 5641  ccom 5645  wf 6510  cfv 6514  cc 11073  cr 11074  cle 11216  abscabs 15207  𝑂(1)co1 15459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ico 13319  df-o1 15463
This theorem is referenced by:  o1compt  15560
  Copyright terms: Public domain W3C validator