MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1co Structured version   Visualization version   GIF version

Theorem o1co 15468
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
o1co.1 (𝜑𝐹:𝐴⟶ℂ)
o1co.2 (𝜑𝐹 ∈ 𝑂(1))
o1co.3 (𝜑𝐺:𝐵𝐴)
o1co.4 (𝜑𝐵 ⊆ ℝ)
o1co.5 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)))
Assertion
Ref Expression
o1co (𝜑 → (𝐹𝐺) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝑚,𝐹,𝑥,𝑦   𝑚,𝐺,𝑥,𝑦   𝜑,𝑚,𝑥,𝑦   𝐵,𝑚,𝑥,𝑦

Proof of Theorem o1co
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1co.2 . . . 4 (𝜑𝐹 ∈ 𝑂(1))
2 o1co.1 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
32fdmd 6679 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
4 o1dm 15412 . . . . . . 7 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
51, 4syl 17 . . . . . 6 (𝜑 → dom 𝐹 ⊆ ℝ)
63, 5eqsstrrd 3983 . . . . 5 (𝜑𝐴 ⊆ ℝ)
7 elo12 15409 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)))
82, 6, 7syl2anc 584 . . . 4 (𝜑 → (𝐹 ∈ 𝑂(1) ↔ ∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)))
91, 8mpbid 231 . . 3 (𝜑 → ∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛))
10 o1co.5 . . . . 5 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)))
11 reeanv 3217 . . . . . 6 (∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ↔ (∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)))
12 o1co.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐺:𝐵𝐴)
1312ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) → 𝐺:𝐵𝐴)
1413ffvelcdmda 7035 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ 𝑦𝐵) → (𝐺𝑦) ∈ 𝐴)
15 breq2 5109 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑦) → (𝑚𝑧𝑚 ≤ (𝐺𝑦)))
16 2fveq3 6847 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐺𝑦) → (abs‘(𝐹𝑧)) = (abs‘(𝐹‘(𝐺𝑦))))
1716breq1d 5115 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑦) → ((abs‘(𝐹𝑧)) ≤ 𝑛 ↔ (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
1815, 17imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐺𝑦) → ((𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) ↔ (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛)))
1918rspcva 3579 . . . . . . . . . . . . . . 15 (((𝐺𝑦) ∈ 𝐴 ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2014, 19sylan 580 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ 𝑦𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2120an32s 650 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2213adantr 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → 𝐺:𝐵𝐴)
23 fvco3 6940 . . . . . . . . . . . . . . . 16 ((𝐺:𝐵𝐴𝑦𝐵) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
2422, 23sylan 580 . . . . . . . . . . . . . . 15 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
2524fveq2d 6846 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → (abs‘((𝐹𝐺)‘𝑦)) = (abs‘(𝐹‘(𝐺𝑦))))
2625breq1d 5115 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → ((abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛 ↔ (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2721, 26sylibrd 258 . . . . . . . . . . . 12 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → (𝑚 ≤ (𝐺𝑦) → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛))
2827imim2d 57 . . . . . . . . . . 11 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → ((𝑥𝑦𝑚 ≤ (𝐺𝑦)) → (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
2928ralimdva 3164 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) → ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3029expimpd 454 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) → ((∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) ∧ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦))) → ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3130ancomsd 466 . . . . . . . 8 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) → ((∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3231reximdva 3165 . . . . . . 7 (((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑛 ∈ ℝ (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3332reximdva 3165 . . . . . 6 ((𝜑𝑚 ∈ ℝ) → (∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3411, 33biimtrrid 242 . . . . 5 ((𝜑𝑚 ∈ ℝ) → ((∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3510, 34mpand 693 . . . 4 ((𝜑𝑚 ∈ ℝ) → (∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3635rexlimdva 3152 . . 3 (𝜑 → (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
379, 36mpd 15 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛))
38 fco 6692 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐵𝐴) → (𝐹𝐺):𝐵⟶ℂ)
392, 12, 38syl2anc 584 . . 3 (𝜑 → (𝐹𝐺):𝐵⟶ℂ)
40 o1co.4 . . 3 (𝜑𝐵 ⊆ ℝ)
41 elo12 15409 . . 3 (((𝐹𝐺):𝐵⟶ℂ ∧ 𝐵 ⊆ ℝ) → ((𝐹𝐺) ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
4239, 40, 41syl2anc 584 . 2 (𝜑 → ((𝐹𝐺) ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
4337, 42mpbird 256 1 (𝜑 → (𝐹𝐺) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  wss 3910   class class class wbr 5105  dom cdm 5633  ccom 5637  wf 6492  cfv 6496  cc 11049  cr 11050  cle 11190  abscabs 15119  𝑂(1)co1 15368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-pre-lttri 11125  ax-pre-lttrn 11126
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-ico 13270  df-o1 15372
This theorem is referenced by:  o1compt  15469
  Copyright terms: Public domain W3C validator