MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1co Structured version   Visualization version   GIF version

Theorem o1co 15528
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
o1co.1 (𝜑𝐹:𝐴⟶ℂ)
o1co.2 (𝜑𝐹 ∈ 𝑂(1))
o1co.3 (𝜑𝐺:𝐵𝐴)
o1co.4 (𝜑𝐵 ⊆ ℝ)
o1co.5 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)))
Assertion
Ref Expression
o1co (𝜑 → (𝐹𝐺) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝑚,𝐹,𝑥,𝑦   𝑚,𝐺,𝑥,𝑦   𝜑,𝑚,𝑥,𝑦   𝐵,𝑚,𝑥,𝑦

Proof of Theorem o1co
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1co.2 . . . 4 (𝜑𝐹 ∈ 𝑂(1))
2 o1co.1 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
32fdmd 6719 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
4 o1dm 15472 . . . . . . 7 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
51, 4syl 17 . . . . . 6 (𝜑 → dom 𝐹 ⊆ ℝ)
63, 5eqsstrrd 4014 . . . . 5 (𝜑𝐴 ⊆ ℝ)
7 elo12 15469 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)))
82, 6, 7syl2anc 583 . . . 4 (𝜑 → (𝐹 ∈ 𝑂(1) ↔ ∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)))
91, 8mpbid 231 . . 3 (𝜑 → ∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛))
10 o1co.5 . . . . 5 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)))
11 reeanv 3218 . . . . . 6 (∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ↔ (∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)))
12 o1co.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐺:𝐵𝐴)
1312ad3antrrr 727 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) → 𝐺:𝐵𝐴)
1413ffvelcdmda 7077 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ 𝑦𝐵) → (𝐺𝑦) ∈ 𝐴)
15 breq2 5143 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑦) → (𝑚𝑧𝑚 ≤ (𝐺𝑦)))
16 2fveq3 6887 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐺𝑦) → (abs‘(𝐹𝑧)) = (abs‘(𝐹‘(𝐺𝑦))))
1716breq1d 5149 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑦) → ((abs‘(𝐹𝑧)) ≤ 𝑛 ↔ (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
1815, 17imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐺𝑦) → ((𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) ↔ (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛)))
1918rspcva 3602 . . . . . . . . . . . . . . 15 (((𝐺𝑦) ∈ 𝐴 ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2014, 19sylan 579 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ 𝑦𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2120an32s 649 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2213adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → 𝐺:𝐵𝐴)
23 fvco3 6981 . . . . . . . . . . . . . . . 16 ((𝐺:𝐵𝐴𝑦𝐵) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
2422, 23sylan 579 . . . . . . . . . . . . . . 15 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
2524fveq2d 6886 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → (abs‘((𝐹𝐺)‘𝑦)) = (abs‘(𝐹‘(𝐺𝑦))))
2625breq1d 5149 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → ((abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛 ↔ (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2721, 26sylibrd 259 . . . . . . . . . . . 12 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → (𝑚 ≤ (𝐺𝑦) → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛))
2827imim2d 57 . . . . . . . . . . 11 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → ((𝑥𝑦𝑚 ≤ (𝐺𝑦)) → (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
2928ralimdva 3159 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) → ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3029expimpd 453 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) → ((∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) ∧ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦))) → ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3130ancomsd 465 . . . . . . . 8 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) → ((∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3231reximdva 3160 . . . . . . 7 (((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑛 ∈ ℝ (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3332reximdva 3160 . . . . . 6 ((𝜑𝑚 ∈ ℝ) → (∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3411, 33biimtrrid 242 . . . . 5 ((𝜑𝑚 ∈ ℝ) → ((∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3510, 34mpand 692 . . . 4 ((𝜑𝑚 ∈ ℝ) → (∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3635rexlimdva 3147 . . 3 (𝜑 → (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
379, 36mpd 15 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛))
38 fco 6732 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐵𝐴) → (𝐹𝐺):𝐵⟶ℂ)
392, 12, 38syl2anc 583 . . 3 (𝜑 → (𝐹𝐺):𝐵⟶ℂ)
40 o1co.4 . . 3 (𝜑𝐵 ⊆ ℝ)
41 elo12 15469 . . 3 (((𝐹𝐺):𝐵⟶ℂ ∧ 𝐵 ⊆ ℝ) → ((𝐹𝐺) ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
4239, 40, 41syl2anc 583 . 2 (𝜑 → ((𝐹𝐺) ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
4337, 42mpbird 257 1 (𝜑 → (𝐹𝐺) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3053  wrex 3062  wss 3941   class class class wbr 5139  dom cdm 5667  ccom 5671  wf 6530  cfv 6534  cc 11105  cr 11106  cle 11247  abscabs 15179  𝑂(1)co1 15428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-pre-lttri 11181  ax-pre-lttrn 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-po 5579  df-so 5580  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-er 8700  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-ico 13328  df-o1 15432
This theorem is referenced by:  o1compt  15529
  Copyright terms: Public domain W3C validator