MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1co Structured version   Visualization version   GIF version

Theorem o1co 15528
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
o1co.1 (𝜑𝐹:𝐴⟶ℂ)
o1co.2 (𝜑𝐹 ∈ 𝑂(1))
o1co.3 (𝜑𝐺:𝐵𝐴)
o1co.4 (𝜑𝐵 ⊆ ℝ)
o1co.5 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)))
Assertion
Ref Expression
o1co (𝜑 → (𝐹𝐺) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝑚,𝐹,𝑥,𝑦   𝑚,𝐺,𝑥,𝑦   𝜑,𝑚,𝑥,𝑦   𝐵,𝑚,𝑥,𝑦

Proof of Theorem o1co
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1co.2 . . . 4 (𝜑𝐹 ∈ 𝑂(1))
2 o1co.1 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
32fdmd 6680 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
4 o1dm 15472 . . . . . . 7 (𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ)
51, 4syl 17 . . . . . 6 (𝜑 → dom 𝐹 ⊆ ℝ)
63, 5eqsstrrd 3979 . . . . 5 (𝜑𝐴 ⊆ ℝ)
7 elo12 15469 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ 𝑂(1) ↔ ∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)))
82, 6, 7syl2anc 584 . . . 4 (𝜑 → (𝐹 ∈ 𝑂(1) ↔ ∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)))
91, 8mpbid 232 . . 3 (𝜑 → ∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛))
10 o1co.5 . . . . 5 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)))
11 reeanv 3207 . . . . . 6 (∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ↔ (∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)))
12 o1co.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐺:𝐵𝐴)
1312ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) → 𝐺:𝐵𝐴)
1413ffvelcdmda 7038 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ 𝑦𝐵) → (𝐺𝑦) ∈ 𝐴)
15 breq2 5106 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑦) → (𝑚𝑧𝑚 ≤ (𝐺𝑦)))
16 2fveq3 6845 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐺𝑦) → (abs‘(𝐹𝑧)) = (abs‘(𝐹‘(𝐺𝑦))))
1716breq1d 5112 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐺𝑦) → ((abs‘(𝐹𝑧)) ≤ 𝑛 ↔ (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
1815, 17imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐺𝑦) → ((𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) ↔ (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛)))
1918rspcva 3583 . . . . . . . . . . . . . . 15 (((𝐺𝑦) ∈ 𝐴 ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2014, 19sylan 580 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ 𝑦𝐵) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2120an32s 652 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → (𝑚 ≤ (𝐺𝑦) → (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2213adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → 𝐺:𝐵𝐴)
23 fvco3 6942 . . . . . . . . . . . . . . . 16 ((𝐺:𝐵𝐴𝑦𝐵) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
2422, 23sylan 580 . . . . . . . . . . . . . . 15 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
2524fveq2d 6844 . . . . . . . . . . . . . 14 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → (abs‘((𝐹𝐺)‘𝑦)) = (abs‘(𝐹‘(𝐺𝑦))))
2625breq1d 5112 . . . . . . . . . . . . 13 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → ((abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛 ↔ (abs‘(𝐹‘(𝐺𝑦))) ≤ 𝑛))
2721, 26sylibrd 259 . . . . . . . . . . . 12 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → (𝑚 ≤ (𝐺𝑦) → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛))
2827imim2d 57 . . . . . . . . . . 11 ((((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) ∧ 𝑦𝐵) → ((𝑥𝑦𝑚 ≤ (𝐺𝑦)) → (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
2928ralimdva 3145 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) → ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3029expimpd 453 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) → ((∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) ∧ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦))) → ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3130ancomsd 465 . . . . . . . 8 ((((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℝ) → ((∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3231reximdva 3146 . . . . . . 7 (((𝜑𝑚 ∈ ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑛 ∈ ℝ (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3332reximdva 3146 . . . . . 6 ((𝜑𝑚 ∈ ℝ) → (∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3411, 33biimtrrid 243 . . . . 5 ((𝜑𝑚 ∈ ℝ) → ((∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ (𝐺𝑦)) ∧ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛)) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3510, 34mpand 695 . . . 4 ((𝜑𝑚 ∈ ℝ) → (∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
3635rexlimdva 3134 . . 3 (𝜑 → (∃𝑚 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑧𝐴 (𝑚𝑧 → (abs‘(𝐹𝑧)) ≤ 𝑛) → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
379, 36mpd 15 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛))
38 fco 6694 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐵𝐴) → (𝐹𝐺):𝐵⟶ℂ)
392, 12, 38syl2anc 584 . . 3 (𝜑 → (𝐹𝐺):𝐵⟶ℂ)
40 o1co.4 . . 3 (𝜑𝐵 ⊆ ℝ)
41 elo12 15469 . . 3 (((𝐹𝐺):𝐵⟶ℂ ∧ 𝐵 ⊆ ℝ) → ((𝐹𝐺) ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
4239, 40, 41syl2anc 584 . 2 (𝜑 → ((𝐹𝐺) ∈ 𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (abs‘((𝐹𝐺)‘𝑦)) ≤ 𝑛)))
4337, 42mpbird 257 1 (𝜑 → (𝐹𝐺) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3911   class class class wbr 5102  dom cdm 5631  ccom 5635  wf 6495  cfv 6499  cc 11042  cr 11043  cle 11185  abscabs 15176  𝑂(1)co1 15428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-ico 13288  df-o1 15432
This theorem is referenced by:  o1compt  15529
  Copyright terms: Public domain W3C validator