MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offun Structured version   Visualization version   GIF version

Theorem offun 7688
Description: The function operation produces a function. (Contributed by SN, 23-Jul-2024.)
Hypotheses
Ref Expression
offun.1 (𝜑𝐹 Fn 𝐴)
offun.2 (𝜑𝐺 Fn 𝐵)
offun.3 (𝜑𝐴𝑉)
offun.4 (𝜑𝐵𝑊)
Assertion
Ref Expression
offun (𝜑 → Fun (𝐹f 𝑅𝐺))

Proof of Theorem offun
StepHypRef Expression
1 offun.1 . . 3 (𝜑𝐹 Fn 𝐴)
2 offun.2 . . 3 (𝜑𝐺 Fn 𝐵)
3 offun.3 . . 3 (𝜑𝐴𝑉)
4 offun.4 . . 3 (𝜑𝐵𝑊)
5 eqid 2731 . . 3 (𝐴𝐵) = (𝐴𝐵)
61, 2, 3, 4, 5offn 7687 . 2 (𝜑 → (𝐹f 𝑅𝐺) Fn (𝐴𝐵))
7 fnfun 6649 . 2 ((𝐹f 𝑅𝐺) Fn (𝐴𝐵) → Fun (𝐹f 𝑅𝐺))
86, 7syl 17 1 (𝜑 → Fun (𝐹f 𝑅𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  cin 3947  Fun wfun 6537   Fn wfn 6538  (class class class)co 7412  f cof 7672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674
This theorem is referenced by:  lcomfsupp  20744  frlmphl  21646  frlmsslsp  21661  psrbagev1  21949  psrbagev1OLD  21950  mhpmulcl  22001  mndpsuppss  47210  mndpfsupp  47215
  Copyright terms: Public domain W3C validator