| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > offun | Structured version Visualization version GIF version | ||
| Description: The function operation produces a function. (Contributed by SN, 23-Jul-2024.) |
| Ref | Expression |
|---|---|
| offun.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| offun.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| offun.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| offun.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| offun | ⊢ (𝜑 → Fun (𝐹 ∘f 𝑅𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offun.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | offun.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 3 | offun.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | offun.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | eqid 2733 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | offn 7631 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn (𝐴 ∩ 𝐵)) |
| 7 | fnfun 6588 | . 2 ⊢ ((𝐹 ∘f 𝑅𝐺) Fn (𝐴 ∩ 𝐵) → Fun (𝐹 ∘f 𝑅𝐺)) | |
| 8 | 6, 7 | syl 17 | 1 ⊢ (𝜑 → Fun (𝐹 ∘f 𝑅𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∩ cin 3897 Fun wfun 6482 Fn wfn 6483 (class class class)co 7354 ∘f cof 7616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 |
| This theorem is referenced by: mndpsuppss 18677 mndpfsupp 18679 lcomfsupp 20839 frlmphl 21722 frlmsslsp 21737 psrbagev1 22015 mhpmulcl 22067 mplvrpmrhm 33597 |
| Copyright terms: Public domain | W3C validator |