![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > offun | Structured version Visualization version GIF version |
Description: The function operation produces a function. (Contributed by SN, 23-Jul-2024.) |
Ref | Expression |
---|---|
offun.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
offun.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
offun.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
offun.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
offun | ⊢ (𝜑 → Fun (𝐹 ∘f 𝑅𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | offun.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | offun.2 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
3 | offun.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | offun.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | eqid 2735 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐵) | |
6 | 1, 2, 3, 4, 5 | offn 7710 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) Fn (𝐴 ∩ 𝐵)) |
7 | fnfun 6669 | . 2 ⊢ ((𝐹 ∘f 𝑅𝐺) Fn (𝐴 ∩ 𝐵) → Fun (𝐹 ∘f 𝑅𝐺)) | |
8 | 6, 7 | syl 17 | 1 ⊢ (𝜑 → Fun (𝐹 ∘f 𝑅𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∩ cin 3962 Fun wfun 6557 Fn wfn 6558 (class class class)co 7431 ∘f cof 7695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 |
This theorem is referenced by: mndpsuppss 18791 mndpfsupp 18793 lcomfsupp 20917 frlmphl 21819 frlmsslsp 21834 psrbagev1 22119 mhpmulcl 22171 |
Copyright terms: Public domain | W3C validator |