![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mzpmulmpt | Structured version Visualization version GIF version |
Description: Product of polynomial functions is polynomial. Maps-to version of mzpmulmpt 42211. (Contributed by Stefan O'Rear, 5-Oct-2014.) |
Ref | Expression |
---|---|
mzpmulmpt | β’ (((π₯ β (β€ βm π) β¦ π΄) β (mzPolyβπ) β§ (π₯ β (β€ βm π) β¦ π΅) β (mzPolyβπ)) β (π₯ β (β€ βm π) β¦ (π΄ Β· π΅)) β (mzPolyβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mzpf 42205 | . . . 4 β’ ((π₯ β (β€ βm π) β¦ π΄) β (mzPolyβπ) β (π₯ β (β€ βm π) β¦ π΄):(β€ βm π)βΆβ€) | |
2 | 1 | ffnd 6728 | . . 3 β’ ((π₯ β (β€ βm π) β¦ π΄) β (mzPolyβπ) β (π₯ β (β€ βm π) β¦ π΄) Fn (β€ βm π)) |
3 | mzpf 42205 | . . . 4 β’ ((π₯ β (β€ βm π) β¦ π΅) β (mzPolyβπ) β (π₯ β (β€ βm π) β¦ π΅):(β€ βm π)βΆβ€) | |
4 | 3 | ffnd 6728 | . . 3 β’ ((π₯ β (β€ βm π) β¦ π΅) β (mzPolyβπ) β (π₯ β (β€ βm π) β¦ π΅) Fn (β€ βm π)) |
5 | ovex 7459 | . . . 4 β’ (β€ βm π) β V | |
6 | ofmpteq 7714 | . . . 4 β’ (((β€ βm π) β V β§ (π₯ β (β€ βm π) β¦ π΄) Fn (β€ βm π) β§ (π₯ β (β€ βm π) β¦ π΅) Fn (β€ βm π)) β ((π₯ β (β€ βm π) β¦ π΄) βf Β· (π₯ β (β€ βm π) β¦ π΅)) = (π₯ β (β€ βm π) β¦ (π΄ Β· π΅))) | |
7 | 5, 6 | mp3an1 1444 | . . 3 β’ (((π₯ β (β€ βm π) β¦ π΄) Fn (β€ βm π) β§ (π₯ β (β€ βm π) β¦ π΅) Fn (β€ βm π)) β ((π₯ β (β€ βm π) β¦ π΄) βf Β· (π₯ β (β€ βm π) β¦ π΅)) = (π₯ β (β€ βm π) β¦ (π΄ Β· π΅))) |
8 | 2, 4, 7 | syl2an 594 | . 2 β’ (((π₯ β (β€ βm π) β¦ π΄) β (mzPolyβπ) β§ (π₯ β (β€ βm π) β¦ π΅) β (mzPolyβπ)) β ((π₯ β (β€ βm π) β¦ π΄) βf Β· (π₯ β (β€ βm π) β¦ π΅)) = (π₯ β (β€ βm π) β¦ (π΄ Β· π΅))) |
9 | mzpmul 42208 | . 2 β’ (((π₯ β (β€ βm π) β¦ π΄) β (mzPolyβπ) β§ (π₯ β (β€ βm π) β¦ π΅) β (mzPolyβπ)) β ((π₯ β (β€ βm π) β¦ π΄) βf Β· (π₯ β (β€ βm π) β¦ π΅)) β (mzPolyβπ)) | |
10 | 8, 9 | eqeltrrd 2830 | 1 β’ (((π₯ β (β€ βm π) β¦ π΄) β (mzPolyβπ) β§ (π₯ β (β€ βm π) β¦ π΅) β (mzPolyβπ)) β (π₯ β (β€ βm π) β¦ (π΄ Β· π΅)) β (mzPolyβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 Vcvv 3473 β¦ cmpt 5235 Fn wfn 6548 βcfv 6553 (class class class)co 7426 βf cof 7690 βm cmap 8853 Β· cmul 11153 β€cz 12598 mzPolycmzp 42191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7692 df-om 7879 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-map 8855 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-n0 12513 df-z 12599 df-mzpcl 42192 df-mzp 42193 |
This theorem is referenced by: mzpsubmpt 42212 mzpexpmpt 42214 mzpsubst 42217 mzpcompact2lem 42220 diophun 42242 dvdsrabdioph 42279 rmydioph 42484 rmxdioph 42486 expdiophlem2 42492 |
Copyright terms: Public domain | W3C validator |