| Step | Hyp | Ref
| Expression |
| 1 | | ofco.3 |
. . . 4
⊢ (𝜑 → 𝐻:𝐷⟶𝐶) |
| 2 | 1 | ffvelcdmda 7074 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐻‘𝑥) ∈ 𝐶) |
| 3 | 1 | feqmptd 6947 |
. . 3
⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐷 ↦ (𝐻‘𝑥))) |
| 4 | | ofco.1 |
. . . 4
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 5 | | ofco.2 |
. . . 4
⊢ (𝜑 → 𝐺 Fn 𝐵) |
| 6 | | ofco.4 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 7 | | ofco.5 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 8 | | ofco.7 |
. . . 4
⊢ (𝐴 ∩ 𝐵) = 𝐶 |
| 9 | | eqidd 2736 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) = (𝐹‘𝑦)) |
| 10 | | eqidd 2736 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐺‘𝑦) = (𝐺‘𝑦)) |
| 11 | 4, 5, 6, 7, 8, 9, 10 | offval 7680 |
. . 3
⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑦 ∈ 𝐶 ↦ ((𝐹‘𝑦)𝑅(𝐺‘𝑦)))) |
| 12 | | fveq2 6876 |
. . . 4
⊢ (𝑦 = (𝐻‘𝑥) → (𝐹‘𝑦) = (𝐹‘(𝐻‘𝑥))) |
| 13 | | fveq2 6876 |
. . . 4
⊢ (𝑦 = (𝐻‘𝑥) → (𝐺‘𝑦) = (𝐺‘(𝐻‘𝑥))) |
| 14 | 12, 13 | oveq12d 7423 |
. . 3
⊢ (𝑦 = (𝐻‘𝑥) → ((𝐹‘𝑦)𝑅(𝐺‘𝑦)) = ((𝐹‘(𝐻‘𝑥))𝑅(𝐺‘(𝐻‘𝑥)))) |
| 15 | 2, 3, 11, 14 | fmptco 7119 |
. 2
⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) ∘ 𝐻) = (𝑥 ∈ 𝐷 ↦ ((𝐹‘(𝐻‘𝑥))𝑅(𝐺‘(𝐻‘𝑥))))) |
| 16 | | inss1 4212 |
. . . . . 6
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
| 17 | 8, 16 | eqsstrri 4006 |
. . . . 5
⊢ 𝐶 ⊆ 𝐴 |
| 18 | | fss 6722 |
. . . . 5
⊢ ((𝐻:𝐷⟶𝐶 ∧ 𝐶 ⊆ 𝐴) → 𝐻:𝐷⟶𝐴) |
| 19 | 1, 17, 18 | sylancl 586 |
. . . 4
⊢ (𝜑 → 𝐻:𝐷⟶𝐴) |
| 20 | | fnfco 6743 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐻:𝐷⟶𝐴) → (𝐹 ∘ 𝐻) Fn 𝐷) |
| 21 | 4, 19, 20 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐹 ∘ 𝐻) Fn 𝐷) |
| 22 | | inss2 4213 |
. . . . . 6
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| 23 | 8, 22 | eqsstrri 4006 |
. . . . 5
⊢ 𝐶 ⊆ 𝐵 |
| 24 | | fss 6722 |
. . . . 5
⊢ ((𝐻:𝐷⟶𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐻:𝐷⟶𝐵) |
| 25 | 1, 23, 24 | sylancl 586 |
. . . 4
⊢ (𝜑 → 𝐻:𝐷⟶𝐵) |
| 26 | | fnfco 6743 |
. . . 4
⊢ ((𝐺 Fn 𝐵 ∧ 𝐻:𝐷⟶𝐵) → (𝐺 ∘ 𝐻) Fn 𝐷) |
| 27 | 5, 25, 26 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐺 ∘ 𝐻) Fn 𝐷) |
| 28 | | ofco.6 |
. . 3
⊢ (𝜑 → 𝐷 ∈ 𝑋) |
| 29 | | inidm 4202 |
. . 3
⊢ (𝐷 ∩ 𝐷) = 𝐷 |
| 30 | 1 | ffnd 6707 |
. . . 4
⊢ (𝜑 → 𝐻 Fn 𝐷) |
| 31 | | fvco2 6976 |
. . . 4
⊢ ((𝐻 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → ((𝐹 ∘ 𝐻)‘𝑥) = (𝐹‘(𝐻‘𝑥))) |
| 32 | 30, 31 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐹 ∘ 𝐻)‘𝑥) = (𝐹‘(𝐻‘𝑥))) |
| 33 | | fvco2 6976 |
. . . 4
⊢ ((𝐻 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → ((𝐺 ∘ 𝐻)‘𝑥) = (𝐺‘(𝐻‘𝑥))) |
| 34 | 30, 33 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐺 ∘ 𝐻)‘𝑥) = (𝐺‘(𝐻‘𝑥))) |
| 35 | 21, 27, 28, 28, 29, 32, 34 | offval 7680 |
. 2
⊢ (𝜑 → ((𝐹 ∘ 𝐻) ∘f 𝑅(𝐺 ∘ 𝐻)) = (𝑥 ∈ 𝐷 ↦ ((𝐹‘(𝐻‘𝑥))𝑅(𝐺‘(𝐻‘𝑥))))) |
| 36 | 15, 35 | eqtr4d 2773 |
1
⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) ∘ 𝐻) = ((𝐹 ∘ 𝐻) ∘f 𝑅(𝐺 ∘ 𝐻))) |