| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofco | Structured version Visualization version GIF version | ||
| Description: The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.) |
| Ref | Expression |
|---|---|
| ofco.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| ofco.2 | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| ofco.3 | ⊢ (𝜑 → 𝐻:𝐷⟶𝐶) |
| ofco.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofco.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ofco.6 | ⊢ (𝜑 → 𝐷 ∈ 𝑋) |
| ofco.7 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| ofco | ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) ∘ 𝐻) = ((𝐹 ∘ 𝐻) ∘f 𝑅(𝐺 ∘ 𝐻))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofco.3 | . . . 4 ⊢ (𝜑 → 𝐻:𝐷⟶𝐶) | |
| 2 | 1 | ffvelcdmda 7017 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐻‘𝑥) ∈ 𝐶) |
| 3 | 1 | feqmptd 6890 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐷 ↦ (𝐻‘𝑥))) |
| 4 | ofco.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 5 | ofco.2 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) | |
| 6 | ofco.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | ofco.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 8 | ofco.7 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
| 9 | eqidd 2732 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) = (𝐹‘𝑦)) | |
| 10 | eqidd 2732 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐺‘𝑦) = (𝐺‘𝑦)) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | offval 7619 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑦 ∈ 𝐶 ↦ ((𝐹‘𝑦)𝑅(𝐺‘𝑦)))) |
| 12 | fveq2 6822 | . . . 4 ⊢ (𝑦 = (𝐻‘𝑥) → (𝐹‘𝑦) = (𝐹‘(𝐻‘𝑥))) | |
| 13 | fveq2 6822 | . . . 4 ⊢ (𝑦 = (𝐻‘𝑥) → (𝐺‘𝑦) = (𝐺‘(𝐻‘𝑥))) | |
| 14 | 12, 13 | oveq12d 7364 | . . 3 ⊢ (𝑦 = (𝐻‘𝑥) → ((𝐹‘𝑦)𝑅(𝐺‘𝑦)) = ((𝐹‘(𝐻‘𝑥))𝑅(𝐺‘(𝐻‘𝑥)))) |
| 15 | 2, 3, 11, 14 | fmptco 7062 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) ∘ 𝐻) = (𝑥 ∈ 𝐷 ↦ ((𝐹‘(𝐻‘𝑥))𝑅(𝐺‘(𝐻‘𝑥))))) |
| 16 | inss1 4184 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 17 | 8, 16 | eqsstrri 3977 | . . . . 5 ⊢ 𝐶 ⊆ 𝐴 |
| 18 | fss 6667 | . . . . 5 ⊢ ((𝐻:𝐷⟶𝐶 ∧ 𝐶 ⊆ 𝐴) → 𝐻:𝐷⟶𝐴) | |
| 19 | 1, 17, 18 | sylancl 586 | . . . 4 ⊢ (𝜑 → 𝐻:𝐷⟶𝐴) |
| 20 | fnfco 6688 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐻:𝐷⟶𝐴) → (𝐹 ∘ 𝐻) Fn 𝐷) | |
| 21 | 4, 19, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 ∘ 𝐻) Fn 𝐷) |
| 22 | inss2 4185 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 23 | 8, 22 | eqsstrri 3977 | . . . . 5 ⊢ 𝐶 ⊆ 𝐵 |
| 24 | fss 6667 | . . . . 5 ⊢ ((𝐻:𝐷⟶𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐻:𝐷⟶𝐵) | |
| 25 | 1, 23, 24 | sylancl 586 | . . . 4 ⊢ (𝜑 → 𝐻:𝐷⟶𝐵) |
| 26 | fnfco 6688 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐻:𝐷⟶𝐵) → (𝐺 ∘ 𝐻) Fn 𝐷) | |
| 27 | 5, 25, 26 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐺 ∘ 𝐻) Fn 𝐷) |
| 28 | ofco.6 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑋) | |
| 29 | inidm 4174 | . . 3 ⊢ (𝐷 ∩ 𝐷) = 𝐷 | |
| 30 | 1 | ffnd 6652 | . . . 4 ⊢ (𝜑 → 𝐻 Fn 𝐷) |
| 31 | fvco2 6919 | . . . 4 ⊢ ((𝐻 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → ((𝐹 ∘ 𝐻)‘𝑥) = (𝐹‘(𝐻‘𝑥))) | |
| 32 | 30, 31 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐹 ∘ 𝐻)‘𝑥) = (𝐹‘(𝐻‘𝑥))) |
| 33 | fvco2 6919 | . . . 4 ⊢ ((𝐻 Fn 𝐷 ∧ 𝑥 ∈ 𝐷) → ((𝐺 ∘ 𝐻)‘𝑥) = (𝐺‘(𝐻‘𝑥))) | |
| 34 | 30, 33 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐺 ∘ 𝐻)‘𝑥) = (𝐺‘(𝐻‘𝑥))) |
| 35 | 21, 27, 28, 28, 29, 32, 34 | offval 7619 | . 2 ⊢ (𝜑 → ((𝐹 ∘ 𝐻) ∘f 𝑅(𝐺 ∘ 𝐻)) = (𝑥 ∈ 𝐷 ↦ ((𝐹‘(𝐻‘𝑥))𝑅(𝐺‘(𝐻‘𝑥))))) |
| 36 | 15, 35 | eqtr4d 2769 | 1 ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) ∘ 𝐻) = ((𝐹 ∘ 𝐻) ∘f 𝑅(𝐺 ∘ 𝐻))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 ↦ cmpt 5170 ∘ ccom 5618 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 |
| This theorem is referenced by: gsumzaddlem 19833 coe1add 22178 pf1ind 22270 1arithidomlem2 33501 mplvrpmrhm 33577 mendring 43229 |
| Copyright terms: Public domain | W3C validator |