MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofco Structured version   Visualization version   GIF version

Theorem ofco 7702
Description: The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.)
Hypotheses
Ref Expression
ofco.1 (𝜑𝐹 Fn 𝐴)
ofco.2 (𝜑𝐺 Fn 𝐵)
ofco.3 (𝜑𝐻:𝐷𝐶)
ofco.4 (𝜑𝐴𝑉)
ofco.5 (𝜑𝐵𝑊)
ofco.6 (𝜑𝐷𝑋)
ofco.7 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
ofco (𝜑 → ((𝐹f 𝑅𝐺) ∘ 𝐻) = ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)))

Proof of Theorem ofco
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofco.3 . . . 4 (𝜑𝐻:𝐷𝐶)
21ffvelcdmda 7088 . . 3 ((𝜑𝑥𝐷) → (𝐻𝑥) ∈ 𝐶)
31feqmptd 6961 . . 3 (𝜑𝐻 = (𝑥𝐷 ↦ (𝐻𝑥)))
4 ofco.1 . . . 4 (𝜑𝐹 Fn 𝐴)
5 ofco.2 . . . 4 (𝜑𝐺 Fn 𝐵)
6 ofco.4 . . . 4 (𝜑𝐴𝑉)
7 ofco.5 . . . 4 (𝜑𝐵𝑊)
8 ofco.7 . . . 4 (𝐴𝐵) = 𝐶
9 eqidd 2729 . . . 4 ((𝜑𝑦𝐴) → (𝐹𝑦) = (𝐹𝑦))
10 eqidd 2729 . . . 4 ((𝜑𝑦𝐵) → (𝐺𝑦) = (𝐺𝑦))
114, 5, 6, 7, 8, 9, 10offval 7688 . . 3 (𝜑 → (𝐹f 𝑅𝐺) = (𝑦𝐶 ↦ ((𝐹𝑦)𝑅(𝐺𝑦))))
12 fveq2 6891 . . . 4 (𝑦 = (𝐻𝑥) → (𝐹𝑦) = (𝐹‘(𝐻𝑥)))
13 fveq2 6891 . . . 4 (𝑦 = (𝐻𝑥) → (𝐺𝑦) = (𝐺‘(𝐻𝑥)))
1412, 13oveq12d 7432 . . 3 (𝑦 = (𝐻𝑥) → ((𝐹𝑦)𝑅(𝐺𝑦)) = ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥))))
152, 3, 11, 14fmptco 7132 . 2 (𝜑 → ((𝐹f 𝑅𝐺) ∘ 𝐻) = (𝑥𝐷 ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
16 inss1 4224 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
178, 16eqsstrri 4013 . . . . 5 𝐶𝐴
18 fss 6733 . . . . 5 ((𝐻:𝐷𝐶𝐶𝐴) → 𝐻:𝐷𝐴)
191, 17, 18sylancl 585 . . . 4 (𝜑𝐻:𝐷𝐴)
20 fnfco 6756 . . . 4 ((𝐹 Fn 𝐴𝐻:𝐷𝐴) → (𝐹𝐻) Fn 𝐷)
214, 19, 20syl2anc 583 . . 3 (𝜑 → (𝐹𝐻) Fn 𝐷)
22 inss2 4225 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
238, 22eqsstrri 4013 . . . . 5 𝐶𝐵
24 fss 6733 . . . . 5 ((𝐻:𝐷𝐶𝐶𝐵) → 𝐻:𝐷𝐵)
251, 23, 24sylancl 585 . . . 4 (𝜑𝐻:𝐷𝐵)
26 fnfco 6756 . . . 4 ((𝐺 Fn 𝐵𝐻:𝐷𝐵) → (𝐺𝐻) Fn 𝐷)
275, 25, 26syl2anc 583 . . 3 (𝜑 → (𝐺𝐻) Fn 𝐷)
28 ofco.6 . . 3 (𝜑𝐷𝑋)
29 inidm 4214 . . 3 (𝐷𝐷) = 𝐷
301ffnd 6717 . . . 4 (𝜑𝐻 Fn 𝐷)
31 fvco2 6989 . . . 4 ((𝐻 Fn 𝐷𝑥𝐷) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
3230, 31sylan 579 . . 3 ((𝜑𝑥𝐷) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
33 fvco2 6989 . . . 4 ((𝐻 Fn 𝐷𝑥𝐷) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
3430, 33sylan 579 . . 3 ((𝜑𝑥𝐷) → ((𝐺𝐻)‘𝑥) = (𝐺‘(𝐻𝑥)))
3521, 27, 28, 28, 29, 32, 34offval 7688 . 2 (𝜑 → ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)) = (𝑥𝐷 ↦ ((𝐹‘(𝐻𝑥))𝑅(𝐺‘(𝐻𝑥)))))
3615, 35eqtr4d 2771 1 (𝜑 → ((𝐹f 𝑅𝐺) ∘ 𝐻) = ((𝐹𝐻) ∘f 𝑅(𝐺𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cin 3944  wss 3945  cmpt 5225  ccom 5676   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  f cof 7677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679
This theorem is referenced by:  gsumzaddlem  19869  coe1add  22176  pf1ind  22267  mendring  42610
  Copyright terms: Public domain W3C validator