MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofrfval2 Structured version   Visualization version   GIF version

Theorem ofrfval2 7245
Description: The function relation acting on maps. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval2.1 (𝜑𝐴𝑉)
offval2.2 ((𝜑𝑥𝐴) → 𝐵𝑊)
offval2.3 ((𝜑𝑥𝐴) → 𝐶𝑋)
offval2.4 (𝜑𝐹 = (𝑥𝐴𝐵))
offval2.5 (𝜑𝐺 = (𝑥𝐴𝐶))
Assertion
Ref Expression
ofrfval2 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥𝐴 𝐵𝑅𝐶))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem ofrfval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 offval2.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑊)
21ralrimiva 3132 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
3 eqid 2778 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43fnmpt 6318 . . . . 5 (∀𝑥𝐴 𝐵𝑊 → (𝑥𝐴𝐵) Fn 𝐴)
52, 4syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
6 offval2.4 . . . . 5 (𝜑𝐹 = (𝑥𝐴𝐵))
76fneq1d 6279 . . . 4 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
85, 7mpbird 249 . . 3 (𝜑𝐹 Fn 𝐴)
9 offval2.3 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶𝑋)
109ralrimiva 3132 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐶𝑋)
11 eqid 2778 . . . . . 6 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
1211fnmpt 6318 . . . . 5 (∀𝑥𝐴 𝐶𝑋 → (𝑥𝐴𝐶) Fn 𝐴)
1310, 12syl 17 . . . 4 (𝜑 → (𝑥𝐴𝐶) Fn 𝐴)
14 offval2.5 . . . . 5 (𝜑𝐺 = (𝑥𝐴𝐶))
1514fneq1d 6279 . . . 4 (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑥𝐴𝐶) Fn 𝐴))
1613, 15mpbird 249 . . 3 (𝜑𝐺 Fn 𝐴)
17 offval2.1 . . 3 (𝜑𝐴𝑉)
18 inidm 4082 . . 3 (𝐴𝐴) = 𝐴
196adantr 473 . . . 4 ((𝜑𝑦𝐴) → 𝐹 = (𝑥𝐴𝐵))
2019fveq1d 6501 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) = ((𝑥𝐴𝐵)‘𝑦))
2114adantr 473 . . . 4 ((𝜑𝑦𝐴) → 𝐺 = (𝑥𝐴𝐶))
2221fveq1d 6501 . . 3 ((𝜑𝑦𝐴) → (𝐺𝑦) = ((𝑥𝐴𝐶)‘𝑦))
238, 16, 17, 17, 18, 20, 22ofrfval 7235 . 2 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑦𝐴 ((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦)))
24 nffvmpt1 6510 . . . . 5 𝑥((𝑥𝐴𝐵)‘𝑦)
25 nfcv 2932 . . . . 5 𝑥𝑅
26 nffvmpt1 6510 . . . . 5 𝑥((𝑥𝐴𝐶)‘𝑦)
2724, 25, 26nfbr 4976 . . . 4 𝑥((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦)
28 nfv 1873 . . . 4 𝑦((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥)
29 fveq2 6499 . . . . 5 (𝑦 = 𝑥 → ((𝑥𝐴𝐵)‘𝑦) = ((𝑥𝐴𝐵)‘𝑥))
30 fveq2 6499 . . . . 5 (𝑦 = 𝑥 → ((𝑥𝐴𝐶)‘𝑦) = ((𝑥𝐴𝐶)‘𝑥))
3129, 30breq12d 4942 . . . 4 (𝑦 = 𝑥 → (((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦) ↔ ((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥)))
3227, 28, 31cbvral 3379 . . 3 (∀𝑦𝐴 ((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦) ↔ ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥))
33 simpr 477 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
343fvmpt2 6605 . . . . . 6 ((𝑥𝐴𝐵𝑊) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3533, 1, 34syl2anc 576 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3611fvmpt2 6605 . . . . . 6 ((𝑥𝐴𝐶𝑋) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
3733, 9, 36syl2anc 576 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
3835, 37breq12d 4942 . . . 4 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥) ↔ 𝐵𝑅𝐶))
3938ralbidva 3146 . . 3 (𝜑 → (∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥)𝑅((𝑥𝐴𝐶)‘𝑥) ↔ ∀𝑥𝐴 𝐵𝑅𝐶))
4032, 39syl5bb 275 . 2 (𝜑 → (∀𝑦𝐴 ((𝑥𝐴𝐵)‘𝑦)𝑅((𝑥𝐴𝐶)‘𝑦) ↔ ∀𝑥𝐴 𝐵𝑅𝐶))
4123, 40bitrd 271 1 (𝜑 → (𝐹𝑟 𝑅𝐺 ↔ ∀𝑥𝐴 𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wral 3088   class class class wbr 4929  cmpt 5008   Fn wfn 6183  cfv 6188  𝑟 cofr 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ofr 7228
This theorem is referenced by:  gsumbagdiaglem  19869  mplmonmul  19958  coe1mul2lem1  20138  itg2const  24044  itg2const2  24045  itg2uba  24047  itg2mulclem  24050  itg2splitlem  24052  itg2split  24053  itg2monolem1  24054  itg2gt0  24064  itg2cnlem1  24065  itg2cnlem2  24066  iblss  24108  i1fibl  24111  itgitg1  24112  itgle  24113  ibladdlem  24123  iblabs  24132  iblabsr  24133  iblmulc2  24134  bddmulibl  24142  itg2addnclem  34390  itg2addnclem3  34392  itg2addnc  34393  itg2gt0cn  34394  ibladdnclem  34395  iblabsnc  34403  iblmulc2nc  34404  bddiblnc  34409  ftc1anclem4  34417  ftc1anclem5  34418  ftc1anclem6  34419  ftc1anclem7  34420  ftc1anclem8  34421  ftc1anc  34422
  Copyright terms: Public domain W3C validator