Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucconn Structured version   Visualization version   GIF version

Theorem onsucconn 36472
Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.)
Assertion
Ref Expression
onsucconn (𝐴 ∈ On → suc 𝐴 ∈ Conn)

Proof of Theorem onsucconn
StepHypRef Expression
1 suceq 6369 . . 3 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → suc 𝐴 = suc if(𝐴 ∈ On, 𝐴, ∅))
21eleq1d 2816 . 2 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (suc 𝐴 ∈ Conn ↔ suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Conn))
3 0elon 6356 . . . 4 ∅ ∈ On
43elimel 4540 . . 3 if(𝐴 ∈ On, 𝐴, ∅) ∈ On
54onsucconni 36471 . 2 suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Conn
62, 5dedth 4529 1 (𝐴 ∈ On → suc 𝐴 ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  c0 4278  ifcif 4470  Oncon0 6301  suc csuc 6303  Conncconn 23321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-ord 6304  df-on 6305  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-fv 6484  df-topgen 17342  df-top 22804  df-bases 22856  df-cld 22929  df-conn 23322
This theorem is referenced by:  ordtopconn  36473
  Copyright terms: Public domain W3C validator