Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucconn Structured version   Visualization version   GIF version

Theorem onsucconn 32808
Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.)
Assertion
Ref Expression
onsucconn (𝐴 ∈ On → suc 𝐴 ∈ Conn)

Proof of Theorem onsucconn
StepHypRef Expression
1 suceq 5973 . . 3 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → suc 𝐴 = suc if(𝐴 ∈ On, 𝐴, ∅))
21eleq1d 2829 . 2 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (suc 𝐴 ∈ Conn ↔ suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Conn))
3 0elon 5961 . . . 4 ∅ ∈ On
43elimel 4310 . . 3 if(𝐴 ∈ On, 𝐴, ∅) ∈ On
54onsucconni 32807 . 2 suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Conn
62, 5dedth 4299 1 (𝐴 ∈ On → suc 𝐴 ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1652  wcel 2155  c0 4079  ifcif 4243  Oncon0 5908  suc csuc 5910  Conncconn 21494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-ord 5911  df-on 5912  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-fv 6076  df-topgen 16372  df-top 20978  df-bases 21030  df-cld 21103  df-conn 21495
This theorem is referenced by:  ordtopconn  32809
  Copyright terms: Public domain W3C validator