| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucconn | Structured version Visualization version GIF version | ||
| Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| onsucconn | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ Conn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceq 6382 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → suc 𝐴 = suc if(𝐴 ∈ On, 𝐴, ∅)) | |
| 2 | 1 | eleq1d 2818 | . 2 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (suc 𝐴 ∈ Conn ↔ suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Conn)) |
| 3 | 0elon 6369 | . . . 4 ⊢ ∅ ∈ On | |
| 4 | 3 | elimel 4546 | . . 3 ⊢ if(𝐴 ∈ On, 𝐴, ∅) ∈ On |
| 5 | 4 | onsucconni 36553 | . 2 ⊢ suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Conn |
| 6 | 2, 5 | dedth 4535 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ Conn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∅c0 4282 ifcif 4476 Oncon0 6314 suc csuc 6316 Conncconn 23346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-fv 6497 df-topgen 17354 df-top 22829 df-bases 22881 df-cld 22954 df-conn 23347 |
| This theorem is referenced by: ordtopconn 36555 |
| Copyright terms: Public domain | W3C validator |