Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucconn | Structured version Visualization version GIF version |
Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.) |
Ref | Expression |
---|---|
onsucconn | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ Conn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suceq 6367 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → suc 𝐴 = suc if(𝐴 ∈ On, 𝐴, ∅)) | |
2 | 1 | eleq1d 2821 | . 2 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (suc 𝐴 ∈ Conn ↔ suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Conn)) |
3 | 0elon 6355 | . . . 4 ⊢ ∅ ∈ On | |
4 | 3 | elimel 4542 | . . 3 ⊢ if(𝐴 ∈ On, 𝐴, ∅) ∈ On |
5 | 4 | onsucconni 34722 | . 2 ⊢ suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Conn |
6 | 2, 5 | dedth 4531 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ Conn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∅c0 4269 ifcif 4473 Oncon0 6302 suc csuc 6304 Conncconn 22668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-ord 6305 df-on 6306 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-fv 6487 df-topgen 17251 df-top 22149 df-bases 22202 df-cld 22276 df-conn 22669 |
This theorem is referenced by: ordtopconn 34724 |
Copyright terms: Public domain | W3C validator |