MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqnn Structured version   Visualization version   GIF version

Theorem 2sqnn 27350
Description: All primes of the form 4𝑘 + 1 are sums of squares of two positive integers. (Contributed by AV, 11-Jun-2023.)
Assertion
Ref Expression
2sqnn ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))
Distinct variable group:   𝑥,𝑃,𝑦

Proof of Theorem 2sqnn
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqnn0 27349 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)))
2 elnn0 12444 . . . . . . 7 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℕ ∨ 𝑎 = 0))
3 elnn0 12444 . . . . . . . . 9 (𝑏 ∈ ℕ0 ↔ (𝑏 ∈ ℕ ∨ 𝑏 = 0))
4 oveq1 7394 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝑥↑2) = (𝑎↑2))
54oveq1d 7402 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → ((𝑥↑2) + (𝑦↑2)) = ((𝑎↑2) + (𝑦↑2)))
65eqeq2d 2740 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑃 = ((𝑎↑2) + (𝑦↑2))))
7 oveq1 7394 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → (𝑦↑2) = (𝑏↑2))
87oveq2d 7403 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → ((𝑎↑2) + (𝑦↑2)) = ((𝑎↑2) + (𝑏↑2)))
98eqeq2d 2740 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → (𝑃 = ((𝑎↑2) + (𝑦↑2)) ↔ 𝑃 = ((𝑎↑2) + (𝑏↑2))))
106, 9rspc2ev 3601 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))
11103expia 1121 . . . . . . . . . . . . 13 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
1211a1d 25 . . . . . . . . . . . 12 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
1312expcom 413 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (𝑎 ∈ ℕ → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
14 sq0i 14158 . . . . . . . . . . . . . . . . . 18 (𝑎 = 0 → (𝑎↑2) = 0)
1514adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (𝑎↑2) = 0)
1615oveq1d 7402 . . . . . . . . . . . . . . . 16 ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → ((𝑎↑2) + (𝑏↑2)) = (0 + (𝑏↑2)))
17 nncn 12194 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℕ → 𝑏 ∈ ℂ)
1817sqcld 14109 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℕ → (𝑏↑2) ∈ ℂ)
1918addlidd 11375 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℕ → (0 + (𝑏↑2)) = (𝑏↑2))
2019adantl 481 . . . . . . . . . . . . . . . 16 ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (0 + (𝑏↑2)) = (𝑏↑2))
2116, 20eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → ((𝑎↑2) + (𝑏↑2)) = (𝑏↑2))
2221eqeq2d 2740 . . . . . . . . . . . . . 14 ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ 𝑃 = (𝑏↑2)))
23 eleq1 2816 . . . . . . . . . . . . . . . . . 18 (𝑃 = (𝑏↑2) → (𝑃 ∈ ℙ ↔ (𝑏↑2) ∈ ℙ))
2423adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℕ ∧ 𝑃 = (𝑏↑2)) → (𝑃 ∈ ℙ ↔ (𝑏↑2) ∈ ℙ))
25 nnz 12550 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℕ → 𝑏 ∈ ℤ)
26 sqnprm 16672 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℤ → ¬ (𝑏↑2) ∈ ℙ)
2725, 26syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℕ → ¬ (𝑏↑2) ∈ ℙ)
2827pm2.21d 121 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℕ → ((𝑏↑2) ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
2928adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℕ ∧ 𝑃 = (𝑏↑2)) → ((𝑏↑2) ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
3024, 29sylbid 240 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℕ ∧ 𝑃 = (𝑏↑2)) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
3130ex 412 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ → (𝑃 = (𝑏↑2) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
3231adantl 481 . . . . . . . . . . . . . 14 ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (𝑃 = (𝑏↑2) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
3322, 32sylbid 240 . . . . . . . . . . . . 13 ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
3433com23 86 . . . . . . . . . . . 12 ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
3534expcom 413 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (𝑎 = 0 → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
3613, 35jaod 859 . . . . . . . . . 10 (𝑏 ∈ ℕ → ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
37 sq0i 14158 . . . . . . . . . . . . . . . . . 18 (𝑏 = 0 → (𝑏↑2) = 0)
3837adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → (𝑏↑2) = 0)
3938oveq2d 7403 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → ((𝑎↑2) + (𝑏↑2)) = ((𝑎↑2) + 0))
40 nncn 12194 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℕ → 𝑎 ∈ ℂ)
4140sqcld 14109 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℕ → (𝑎↑2) ∈ ℂ)
4241addridd 11374 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℕ → ((𝑎↑2) + 0) = (𝑎↑2))
4342adantl 481 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → ((𝑎↑2) + 0) = (𝑎↑2))
4439, 43eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → ((𝑎↑2) + (𝑏↑2)) = (𝑎↑2))
4544eqeq2d 2740 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ 𝑃 = (𝑎↑2)))
46 eleq1 2816 . . . . . . . . . . . . . . . . . 18 (𝑃 = (𝑎↑2) → (𝑃 ∈ ℙ ↔ (𝑎↑2) ∈ ℙ))
4746adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℕ ∧ 𝑃 = (𝑎↑2)) → (𝑃 ∈ ℙ ↔ (𝑎↑2) ∈ ℙ))
48 nnz 12550 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℕ → 𝑎 ∈ ℤ)
49 sqnprm 16672 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℤ → ¬ (𝑎↑2) ∈ ℙ)
5048, 49syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℕ → ¬ (𝑎↑2) ∈ ℙ)
5150pm2.21d 121 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℕ → ((𝑎↑2) ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
5251adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℕ ∧ 𝑃 = (𝑎↑2)) → ((𝑎↑2) ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
5347, 52sylbid 240 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℕ ∧ 𝑃 = (𝑎↑2)) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
5453ex 412 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℕ → (𝑃 = (𝑎↑2) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
5554adantl 481 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → (𝑃 = (𝑎↑2) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
5645, 55sylbid 240 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
5756com23 86 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
5857ex 412 . . . . . . . . . . 11 (𝑏 = 0 → (𝑎 ∈ ℕ → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
5914, 37oveqan12rd 7407 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑎 = 0) → ((𝑎↑2) + (𝑏↑2)) = (0 + 0))
60 00id 11349 . . . . . . . . . . . . . . . 16 (0 + 0) = 0
6159, 60eqtrdi 2780 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑎 = 0) → ((𝑎↑2) + (𝑏↑2)) = 0)
6261eqeq2d 2740 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑎 = 0) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ 𝑃 = 0))
63 eleq1 2816 . . . . . . . . . . . . . . 15 (𝑃 = 0 → (𝑃 ∈ ℙ ↔ 0 ∈ ℙ))
64 0nprm 16648 . . . . . . . . . . . . . . . 16 ¬ 0 ∈ ℙ
6564pm2.21i 119 . . . . . . . . . . . . . . 15 (0 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))
6663, 65biimtrdi 253 . . . . . . . . . . . . . 14 (𝑃 = 0 → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
6762, 66biimtrdi 253 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑎 = 0) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
6867com23 86 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑎 = 0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
6968ex 412 . . . . . . . . . . 11 (𝑏 = 0 → (𝑎 = 0 → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
7058, 69jaod 859 . . . . . . . . . 10 (𝑏 = 0 → ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
7136, 70jaoi 857 . . . . . . . . 9 ((𝑏 ∈ ℕ ∨ 𝑏 = 0) → ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
723, 71sylbi 217 . . . . . . . 8 (𝑏 ∈ ℕ0 → ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
7372com12 32 . . . . . . 7 ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → (𝑏 ∈ ℕ0 → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
742, 73sylbi 217 . . . . . 6 (𝑎 ∈ ℕ0 → (𝑏 ∈ ℕ0 → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
7574imp 406 . . . . 5 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
7675com12 32 . . . 4 (𝑃 ∈ ℙ → ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
7776adantr 480 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
7877rexlimdvv 3193 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
791, 78mpd 15 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  cn 12186  2c2 12241  4c4 12243  0cn0 12442  cz 12529   mod cmo 13831  cexp 14026  cprime 16641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-phi 16736  df-pc 16808  df-gz 16901  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-imas 17471  df-qus 17472  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-domn 20604  df-idom 20605  df-drng 20640  df-field 20641  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-zn 21416  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evl1 22203  df-mdeg 25960  df-deg1 25961  df-mon1 26036  df-uc1p 26037  df-q1p 26038  df-r1p 26039  df-lgs 27206
This theorem is referenced by:  2sqreunnlem1  27360
  Copyright terms: Public domain W3C validator