| Step | Hyp | Ref
| Expression |
| 1 | | 2sqnn0 27406 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑎 ∈ ℕ0
∃𝑏 ∈
ℕ0 𝑃 =
((𝑎↑2) + (𝑏↑2))) |
| 2 | | elnn0 12508 |
. . . . . . 7
⊢ (𝑎 ∈ ℕ0
↔ (𝑎 ∈ ℕ
∨ 𝑎 =
0)) |
| 3 | | elnn0 12508 |
. . . . . . . . 9
⊢ (𝑏 ∈ ℕ0
↔ (𝑏 ∈ ℕ
∨ 𝑏 =
0)) |
| 4 | | oveq1 7417 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → (𝑥↑2) = (𝑎↑2)) |
| 5 | 4 | oveq1d 7425 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → ((𝑥↑2) + (𝑦↑2)) = ((𝑎↑2) + (𝑦↑2))) |
| 6 | 5 | eqeq2d 2747 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → (𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑃 = ((𝑎↑2) + (𝑦↑2)))) |
| 7 | | oveq1 7417 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑏 → (𝑦↑2) = (𝑏↑2)) |
| 8 | 7 | oveq2d 7426 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑏 → ((𝑎↑2) + (𝑦↑2)) = ((𝑎↑2) + (𝑏↑2))) |
| 9 | 8 | eqeq2d 2747 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑏 → (𝑃 = ((𝑎↑2) + (𝑦↑2)) ↔ 𝑃 = ((𝑎↑2) + (𝑏↑2)))) |
| 10 | 6, 9 | rspc2ev 3619 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))) |
| 11 | 10 | 3expia 1121 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) |
| 12 | 11 | a1d 25 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))) |
| 13 | 12 | expcom 413 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ ℕ → (𝑎 ∈ ℕ → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))) |
| 14 | | sq0i 14216 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 0 → (𝑎↑2) = 0) |
| 15 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (𝑎↑2) = 0) |
| 16 | 15 | oveq1d 7425 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → ((𝑎↑2) + (𝑏↑2)) = (0 + (𝑏↑2))) |
| 17 | | nncn 12253 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈ ℕ → 𝑏 ∈
ℂ) |
| 18 | 17 | sqcld 14167 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈ ℕ → (𝑏↑2) ∈
ℂ) |
| 19 | 18 | addlidd 11441 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈ ℕ → (0 +
(𝑏↑2)) = (𝑏↑2)) |
| 20 | 19 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (0 + (𝑏↑2)) = (𝑏↑2)) |
| 21 | 16, 20 | eqtrd 2771 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → ((𝑎↑2) + (𝑏↑2)) = (𝑏↑2)) |
| 22 | 21 | eqeq2d 2747 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ 𝑃 = (𝑏↑2))) |
| 23 | | eleq1 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 = (𝑏↑2) → (𝑃 ∈ ℙ ↔ (𝑏↑2) ∈ ℙ)) |
| 24 | 23 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏 ∈ ℕ ∧ 𝑃 = (𝑏↑2)) → (𝑃 ∈ ℙ ↔ (𝑏↑2) ∈ ℙ)) |
| 25 | | nnz 12614 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ ℕ → 𝑏 ∈
ℤ) |
| 26 | | sqnprm 16726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ ℤ → ¬
(𝑏↑2) ∈
ℙ) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 ∈ ℕ → ¬
(𝑏↑2) ∈
ℙ) |
| 28 | 27 | pm2.21d 121 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈ ℕ → ((𝑏↑2) ∈ ℙ →
∃𝑥 ∈ ℕ
∃𝑦 ∈ ℕ
𝑃 = ((𝑥↑2) + (𝑦↑2)))) |
| 29 | 28 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏 ∈ ℕ ∧ 𝑃 = (𝑏↑2)) → ((𝑏↑2) ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) |
| 30 | 24, 29 | sylbid 240 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 ∈ ℕ ∧ 𝑃 = (𝑏↑2)) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) |
| 31 | 30 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ ℕ → (𝑃 = (𝑏↑2) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))) |
| 32 | 31 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (𝑃 = (𝑏↑2) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))) |
| 33 | 22, 32 | sylbid 240 |
. . . . . . . . . . . . 13
⊢ ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))) |
| 34 | 33 | com23 86 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))) |
| 35 | 34 | expcom 413 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ ℕ → (𝑎 = 0 → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))) |
| 36 | 13, 35 | jaod 859 |
. . . . . . . . . 10
⊢ (𝑏 ∈ ℕ → ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))) |
| 37 | | sq0i 14216 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 0 → (𝑏↑2) = 0) |
| 38 | 37 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → (𝑏↑2) = 0) |
| 39 | 38 | oveq2d 7426 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → ((𝑎↑2) + (𝑏↑2)) = ((𝑎↑2) + 0)) |
| 40 | | nncn 12253 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
ℂ) |
| 41 | 40 | sqcld 14167 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ∈ ℕ → (𝑎↑2) ∈
ℂ) |
| 42 | 41 | addridd 11440 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ ℕ → ((𝑎↑2) + 0) = (𝑎↑2)) |
| 43 | 42 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → ((𝑎↑2) + 0) = (𝑎↑2)) |
| 44 | 39, 43 | eqtrd 2771 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → ((𝑎↑2) + (𝑏↑2)) = (𝑎↑2)) |
| 45 | 44 | eqeq2d 2747 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ 𝑃 = (𝑎↑2))) |
| 46 | | eleq1 2823 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑃 = (𝑎↑2) → (𝑃 ∈ ℙ ↔ (𝑎↑2) ∈ ℙ)) |
| 47 | 46 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ ℕ ∧ 𝑃 = (𝑎↑2)) → (𝑃 ∈ ℙ ↔ (𝑎↑2) ∈ ℙ)) |
| 48 | | nnz 12614 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
ℤ) |
| 49 | | sqnprm 16726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ ℤ → ¬
(𝑎↑2) ∈
ℙ) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈ ℕ → ¬
(𝑎↑2) ∈
ℙ) |
| 51 | 50 | pm2.21d 121 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ∈ ℕ → ((𝑎↑2) ∈ ℙ →
∃𝑥 ∈ ℕ
∃𝑦 ∈ ℕ
𝑃 = ((𝑥↑2) + (𝑦↑2)))) |
| 52 | 51 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑎 ∈ ℕ ∧ 𝑃 = (𝑎↑2)) → ((𝑎↑2) ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) |
| 53 | 47, 52 | sylbid 240 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ ℕ ∧ 𝑃 = (𝑎↑2)) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) |
| 54 | 53 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ℕ → (𝑃 = (𝑎↑2) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))) |
| 55 | 54 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → (𝑃 = (𝑎↑2) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))) |
| 56 | 45, 55 | sylbid 240 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))) |
| 57 | 56 | com23 86 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))) |
| 58 | 57 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑏 = 0 → (𝑎 ∈ ℕ → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))) |
| 59 | 14, 37 | oveqan12rd 7430 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 = 0 ∧ 𝑎 = 0) → ((𝑎↑2) + (𝑏↑2)) = (0 + 0)) |
| 60 | | 00id 11415 |
. . . . . . . . . . . . . . . 16
⊢ (0 + 0) =
0 |
| 61 | 59, 60 | eqtrdi 2787 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 = 0 ∧ 𝑎 = 0) → ((𝑎↑2) + (𝑏↑2)) = 0) |
| 62 | 61 | eqeq2d 2747 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 = 0 ∧ 𝑎 = 0) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ 𝑃 = 0)) |
| 63 | | eleq1 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 = 0 → (𝑃 ∈ ℙ ↔ 0 ∈
ℙ)) |
| 64 | | 0nprm 16702 |
. . . . . . . . . . . . . . . 16
⊢ ¬ 0
∈ ℙ |
| 65 | 64 | pm2.21i 119 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
ℙ → ∃𝑥
∈ ℕ ∃𝑦
∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))) |
| 66 | 63, 65 | biimtrdi 253 |
. . . . . . . . . . . . . 14
⊢ (𝑃 = 0 → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) |
| 67 | 62, 66 | biimtrdi 253 |
. . . . . . . . . . . . 13
⊢ ((𝑏 = 0 ∧ 𝑎 = 0) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))) |
| 68 | 67 | com23 86 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 0 ∧ 𝑎 = 0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))) |
| 69 | 68 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑏 = 0 → (𝑎 = 0 → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))) |
| 70 | 58, 69 | jaod 859 |
. . . . . . . . . 10
⊢ (𝑏 = 0 → ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))) |
| 71 | 36, 70 | jaoi 857 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ℕ ∨ 𝑏 = 0) → ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))) |
| 72 | 3, 71 | sylbi 217 |
. . . . . . . 8
⊢ (𝑏 ∈ ℕ0
→ ((𝑎 ∈ ℕ
∨ 𝑎 = 0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))) |
| 73 | 72 | com12 32 |
. . . . . . 7
⊢ ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → (𝑏 ∈ ℕ0 → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))) |
| 74 | 2, 73 | sylbi 217 |
. . . . . 6
⊢ (𝑎 ∈ ℕ0
→ (𝑏 ∈
ℕ0 → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))) |
| 75 | 74 | imp 406 |
. . . . 5
⊢ ((𝑎 ∈ ℕ0
∧ 𝑏 ∈
ℕ0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))) |
| 76 | 75 | com12 32 |
. . . 4
⊢ (𝑃 ∈ ℙ → ((𝑎 ∈ ℕ0
∧ 𝑏 ∈
ℕ0) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))) |
| 77 | 76 | adantr 480 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ((𝑎 ∈ ℕ0
∧ 𝑏 ∈
ℕ0) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))) |
| 78 | 77 | rexlimdvv 3201 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) →
(∃𝑎 ∈
ℕ0 ∃𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) |
| 79 | 1, 78 | mpd 15 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))) |