MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqnn Structured version   Visualization version   GIF version

Theorem 2sqnn 26023
Description: All primes of the form 4𝑘 + 1 are sums of squares of two positive integers. (Contributed by AV, 11-Jun-2023.)
Assertion
Ref Expression
2sqnn ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))
Distinct variable group:   𝑥,𝑃,𝑦

Proof of Theorem 2sqnn
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqnn0 26022 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)))
2 elnn0 11887 . . . . . . 7 (𝑎 ∈ ℕ0 ↔ (𝑎 ∈ ℕ ∨ 𝑎 = 0))
3 elnn0 11887 . . . . . . . . 9 (𝑏 ∈ ℕ0 ↔ (𝑏 ∈ ℕ ∨ 𝑏 = 0))
4 oveq1 7142 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝑥↑2) = (𝑎↑2))
54oveq1d 7150 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → ((𝑥↑2) + (𝑦↑2)) = ((𝑎↑2) + (𝑦↑2)))
65eqeq2d 2809 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝑃 = ((𝑥↑2) + (𝑦↑2)) ↔ 𝑃 = ((𝑎↑2) + (𝑦↑2))))
7 oveq1 7142 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → (𝑦↑2) = (𝑏↑2))
87oveq2d 7151 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → ((𝑎↑2) + (𝑦↑2)) = ((𝑎↑2) + (𝑏↑2)))
98eqeq2d 2809 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → (𝑃 = ((𝑎↑2) + (𝑦↑2)) ↔ 𝑃 = ((𝑎↑2) + (𝑏↑2))))
106, 9rspc2ev 3583 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ∧ 𝑃 = ((𝑎↑2) + (𝑏↑2))) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))
11103expia 1118 . . . . . . . . . . . . 13 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
1211a1d 25 . . . . . . . . . . . 12 ((𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
1312expcom 417 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (𝑎 ∈ ℕ → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
14 sq0i 13552 . . . . . . . . . . . . . . . . . 18 (𝑎 = 0 → (𝑎↑2) = 0)
1514adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (𝑎↑2) = 0)
1615oveq1d 7150 . . . . . . . . . . . . . . . 16 ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → ((𝑎↑2) + (𝑏↑2)) = (0 + (𝑏↑2)))
17 nncn 11633 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℕ → 𝑏 ∈ ℂ)
1817sqcld 13504 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℕ → (𝑏↑2) ∈ ℂ)
1918addid2d 10830 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ℕ → (0 + (𝑏↑2)) = (𝑏↑2))
2019adantl 485 . . . . . . . . . . . . . . . 16 ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (0 + (𝑏↑2)) = (𝑏↑2))
2116, 20eqtrd 2833 . . . . . . . . . . . . . . 15 ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → ((𝑎↑2) + (𝑏↑2)) = (𝑏↑2))
2221eqeq2d 2809 . . . . . . . . . . . . . 14 ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ 𝑃 = (𝑏↑2)))
23 eleq1 2877 . . . . . . . . . . . . . . . . . 18 (𝑃 = (𝑏↑2) → (𝑃 ∈ ℙ ↔ (𝑏↑2) ∈ ℙ))
2423adantl 485 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℕ ∧ 𝑃 = (𝑏↑2)) → (𝑃 ∈ ℙ ↔ (𝑏↑2) ∈ ℙ))
25 nnz 11992 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℕ → 𝑏 ∈ ℤ)
26 sqnprm 16036 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ ℤ → ¬ (𝑏↑2) ∈ ℙ)
2725, 26syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ ℕ → ¬ (𝑏↑2) ∈ ℙ)
2827pm2.21d 121 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ ℕ → ((𝑏↑2) ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
2928adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℕ ∧ 𝑃 = (𝑏↑2)) → ((𝑏↑2) ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
3024, 29sylbid 243 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ ℕ ∧ 𝑃 = (𝑏↑2)) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
3130ex 416 . . . . . . . . . . . . . . 15 (𝑏 ∈ ℕ → (𝑃 = (𝑏↑2) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
3231adantl 485 . . . . . . . . . . . . . 14 ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (𝑃 = (𝑏↑2) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
3322, 32sylbid 243 . . . . . . . . . . . . 13 ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
3433com23 86 . . . . . . . . . . . 12 ((𝑎 = 0 ∧ 𝑏 ∈ ℕ) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
3534expcom 417 . . . . . . . . . . 11 (𝑏 ∈ ℕ → (𝑎 = 0 → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
3613, 35jaod 856 . . . . . . . . . 10 (𝑏 ∈ ℕ → ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
37 sq0i 13552 . . . . . . . . . . . . . . . . . 18 (𝑏 = 0 → (𝑏↑2) = 0)
3837adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → (𝑏↑2) = 0)
3938oveq2d 7151 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → ((𝑎↑2) + (𝑏↑2)) = ((𝑎↑2) + 0))
40 nncn 11633 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℕ → 𝑎 ∈ ℂ)
4140sqcld 13504 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℕ → (𝑎↑2) ∈ ℂ)
4241addid1d 10829 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ ℕ → ((𝑎↑2) + 0) = (𝑎↑2))
4342adantl 485 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → ((𝑎↑2) + 0) = (𝑎↑2))
4439, 43eqtrd 2833 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → ((𝑎↑2) + (𝑏↑2)) = (𝑎↑2))
4544eqeq2d 2809 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ 𝑃 = (𝑎↑2)))
46 eleq1 2877 . . . . . . . . . . . . . . . . . 18 (𝑃 = (𝑎↑2) → (𝑃 ∈ ℙ ↔ (𝑎↑2) ∈ ℙ))
4746adantl 485 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℕ ∧ 𝑃 = (𝑎↑2)) → (𝑃 ∈ ℙ ↔ (𝑎↑2) ∈ ℙ))
48 nnz 11992 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℕ → 𝑎 ∈ ℤ)
49 sqnprm 16036 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ ℤ → ¬ (𝑎↑2) ∈ ℙ)
5048, 49syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ ℕ → ¬ (𝑎↑2) ∈ ℙ)
5150pm2.21d 121 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℕ → ((𝑎↑2) ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
5251adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℕ ∧ 𝑃 = (𝑎↑2)) → ((𝑎↑2) ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
5347, 52sylbid 243 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ ℕ ∧ 𝑃 = (𝑎↑2)) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
5453ex 416 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℕ → (𝑃 = (𝑎↑2) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
5554adantl 485 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → (𝑃 = (𝑎↑2) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
5645, 55sylbid 243 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
5756com23 86 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑎 ∈ ℕ) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
5857ex 416 . . . . . . . . . . 11 (𝑏 = 0 → (𝑎 ∈ ℕ → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
5914, 37oveqan12rd 7155 . . . . . . . . . . . . . . . 16 ((𝑏 = 0 ∧ 𝑎 = 0) → ((𝑎↑2) + (𝑏↑2)) = (0 + 0))
60 00id 10804 . . . . . . . . . . . . . . . 16 (0 + 0) = 0
6159, 60eqtrdi 2849 . . . . . . . . . . . . . . 15 ((𝑏 = 0 ∧ 𝑎 = 0) → ((𝑎↑2) + (𝑏↑2)) = 0)
6261eqeq2d 2809 . . . . . . . . . . . . . 14 ((𝑏 = 0 ∧ 𝑎 = 0) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) ↔ 𝑃 = 0))
63 eleq1 2877 . . . . . . . . . . . . . . 15 (𝑃 = 0 → (𝑃 ∈ ℙ ↔ 0 ∈ ℙ))
64 0nprm 16012 . . . . . . . . . . . . . . . 16 ¬ 0 ∈ ℙ
6564pm2.21i 119 . . . . . . . . . . . . . . 15 (0 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))
6663, 65syl6bi 256 . . . . . . . . . . . . . 14 (𝑃 = 0 → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
6762, 66syl6bi 256 . . . . . . . . . . . . 13 ((𝑏 = 0 ∧ 𝑎 = 0) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → (𝑃 ∈ ℙ → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
6867com23 86 . . . . . . . . . . . 12 ((𝑏 = 0 ∧ 𝑎 = 0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
6968ex 416 . . . . . . . . . . 11 (𝑏 = 0 → (𝑎 = 0 → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
7058, 69jaod 856 . . . . . . . . . 10 (𝑏 = 0 → ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
7136, 70jaoi 854 . . . . . . . . 9 ((𝑏 ∈ ℕ ∨ 𝑏 = 0) → ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
723, 71sylbi 220 . . . . . . . 8 (𝑏 ∈ ℕ0 → ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
7372com12 32 . . . . . . 7 ((𝑎 ∈ ℕ ∨ 𝑎 = 0) → (𝑏 ∈ ℕ0 → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
742, 73sylbi 220 . . . . . 6 (𝑎 ∈ ℕ0 → (𝑏 ∈ ℕ0 → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))))
7574imp 410 . . . . 5 ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑃 ∈ ℙ → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
7675com12 32 . . . 4 (𝑃 ∈ ℙ → ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
7776adantr 484 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ((𝑎 ∈ ℕ0𝑏 ∈ ℕ0) → (𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))))
7877rexlimdvv 3252 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃𝑎 ∈ ℕ0𝑏 ∈ ℕ0 𝑃 = ((𝑎↑2) + (𝑏↑2)) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))))
791, 78mpd 15 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wrex 3107  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529  cn 11625  2c2 11680  4c4 11682  0cn0 11885  cz 11969   mod cmo 13232  cexp 13425  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-phi 16093  df-pc 16164  df-gz 16256  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-imas 16773  df-qus 16774  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-nsg 18269  df-eqg 18270  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-srg 19249  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-field 19498  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-sra 19937  df-rgmod 19938  df-lidl 19939  df-rsp 19940  df-2idl 19998  df-nzr 20024  df-rlreg 20049  df-domn 20050  df-idom 20051  df-cnfld 20092  df-zring 20164  df-zrh 20197  df-zn 20200  df-assa 20542  df-asp 20543  df-ascl 20544  df-psr 20594  df-mvr 20595  df-mpl 20596  df-opsr 20598  df-evls 20745  df-evl 20746  df-psr1 20809  df-vr1 20810  df-ply1 20811  df-coe1 20812  df-evl1 20940  df-mdeg 24656  df-deg1 24657  df-mon1 24731  df-uc1p 24732  df-q1p 24733  df-r1p 24734  df-lgs 25879
This theorem is referenced by:  2sqreunnlem1  26033
  Copyright terms: Public domain W3C validator