| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | abelth.1 | . . . . . . 7
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | 
| 2 |  | 0nn0 12541 | . . . . . . . 8
⊢ 0 ∈
ℕ0 | 
| 3 | 2 | a1i 11 | . . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ 0 ∈ ℕ0) | 
| 4 |  | ffvelcdm 7101 | . . . . . . 7
⊢ ((𝐴:ℕ0⟶ℂ ∧ 0
∈ ℕ0) → (𝐴‘0) ∈ ℂ) | 
| 5 | 1, 3, 4 | syl2an 596 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘0) ∈
ℂ) | 
| 6 |  | nn0uz 12920 | . . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) | 
| 7 |  | 0zd 12625 | . . . . . . . 8
⊢ (𝜑 → 0 ∈
ℤ) | 
| 8 |  | eqidd 2738 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝐴‘𝑚) = (𝐴‘𝑚)) | 
| 9 | 1 | ffvelcdmda 7104 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝐴‘𝑚) ∈ ℂ) | 
| 10 |  | abelth.2 | . . . . . . . 8
⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝
) | 
| 11 | 6, 7, 8, 9, 10 | isumcl 15797 | . . . . . . 7
⊢ (𝜑 → Σ𝑚 ∈ ℕ0 (𝐴‘𝑚) ∈ ℂ) | 
| 12 | 11 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
Σ𝑚 ∈
ℕ0 (𝐴‘𝑚) ∈ ℂ) | 
| 13 | 5, 12 | subcld 11620 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)) ∈ ℂ) | 
| 14 | 1 | ffvelcdmda 7104 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | 
| 15 | 13, 14 | ifcld 4572 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) ∈ ℂ) | 
| 16 | 15 | fmpttd 7135 | . . 3
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘))):ℕ0⟶ℂ) | 
| 17 | 2 | a1i 11 | . . . . . 6
⊢ (𝜑 → 0 ∈
ℕ0) | 
| 18 | 16 | ffvelcdmda 7104 | . . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) ∈ ℂ) | 
| 19 |  | 1e0p1 12775 | . . . . . . . . . 10
⊢ 1 = (0 +
1) | 
| 20 |  | 1z 12647 | . . . . . . . . . 10
⊢ 1 ∈
ℤ | 
| 21 | 19, 20 | eqeltrri 2838 | . . . . . . . . 9
⊢ (0 + 1)
∈ ℤ | 
| 22 | 21 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → (0 + 1) ∈
ℤ) | 
| 23 |  | nnuz 12921 | . . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) | 
| 24 | 19 | fveq2i 6909 | . . . . . . . . . . 11
⊢
(ℤ≥‘1) = (ℤ≥‘(0 +
1)) | 
| 25 | 23, 24 | eqtri 2765 | . . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘(0 + 1)) | 
| 26 | 25 | eleq2i 2833 | . . . . . . . . 9
⊢ (𝑖 ∈ ℕ ↔ 𝑖 ∈
(ℤ≥‘(0 + 1))) | 
| 27 |  | nnnn0 12533 | . . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℕ0) | 
| 28 | 27 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0) | 
| 29 |  | eqeq1 2741 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → (𝑘 = 0 ↔ 𝑖 = 0)) | 
| 30 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → (𝐴‘𝑘) = (𝐴‘𝑖)) | 
| 31 | 29, 30 | ifbieq2d 4552 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑖 → if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) = if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖))) | 
| 32 |  | eqid 2737 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘))) | 
| 33 |  | ovex 7464 | . . . . . . . . . . . . 13
⊢ ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)) ∈ V | 
| 34 |  | fvex 6919 | . . . . . . . . . . . . 13
⊢ (𝐴‘𝑖) ∈ V | 
| 35 | 33, 34 | ifex 4576 | . . . . . . . . . . . 12
⊢ if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) ∈ V | 
| 36 | 31, 32, 35 | fvmpt 7016 | . . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) = if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖))) | 
| 37 | 28, 36 | syl 17 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) = if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖))) | 
| 38 |  | nnne0 12300 | . . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ → 𝑖 ≠ 0) | 
| 39 | 38 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ≠ 0) | 
| 40 | 39 | neneqd 2945 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ¬ 𝑖 = 0) | 
| 41 | 40 | iffalsed 4536 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) = (𝐴‘𝑖)) | 
| 42 | 37, 41 | eqtrd 2777 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) = (𝐴‘𝑖)) | 
| 43 | 26, 42 | sylan2br 595 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(0 +
1))) → ((𝑘 ∈
ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) = (𝐴‘𝑖)) | 
| 44 | 22, 43 | seqfeq 14068 | . . . . . . 7
⊢ (𝜑 → seq(0 + 1)( + , (𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))) = seq(0 + 1)( + , 𝐴)) | 
| 45 | 6, 7, 8, 9, 10 | isumclim2 15794 | . . . . . . . . 9
⊢ (𝜑 → seq0( + , 𝐴) ⇝ Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)) | 
| 46 | 6, 17, 14, 45 | clim2ser 15691 | . . . . . . . 8
⊢ (𝜑 → seq(0 + 1)( + , 𝐴) ⇝ (Σ𝑚 ∈ ℕ0
(𝐴‘𝑚) − (seq0( + , 𝐴)‘0))) | 
| 47 |  | 0z 12624 | . . . . . . . . . 10
⊢ 0 ∈
ℤ | 
| 48 |  | seq1 14055 | . . . . . . . . . 10
⊢ (0 ∈
ℤ → (seq0( + , 𝐴)‘0) = (𝐴‘0)) | 
| 49 | 47, 48 | ax-mp 5 | . . . . . . . . 9
⊢ (seq0( +
, 𝐴)‘0) = (𝐴‘0) | 
| 50 | 49 | oveq2i 7442 | . . . . . . . 8
⊢
(Σ𝑚 ∈
ℕ0 (𝐴‘𝑚) − (seq0( + , 𝐴)‘0)) = (Σ𝑚 ∈ ℕ0 (𝐴‘𝑚) − (𝐴‘0)) | 
| 51 | 46, 50 | breqtrdi 5184 | . . . . . . 7
⊢ (𝜑 → seq(0 + 1)( + , 𝐴) ⇝ (Σ𝑚 ∈ ℕ0
(𝐴‘𝑚) − (𝐴‘0))) | 
| 52 | 44, 51 | eqbrtrd 5165 | . . . . . 6
⊢ (𝜑 → seq(0 + 1)( + , (𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))) ⇝ (Σ𝑚 ∈ ℕ0 (𝐴‘𝑚) − (𝐴‘0))) | 
| 53 | 6, 17, 18, 52 | clim2ser2 15692 | . . . . 5
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))) ⇝ ((Σ𝑚 ∈ ℕ0 (𝐴‘𝑚) − (𝐴‘0)) + (seq0( + , (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘))))‘0))) | 
| 54 |  | seq1 14055 | . . . . . . . . 9
⊢ (0 ∈
ℤ → (seq0( + , (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))‘0)) | 
| 55 | 47, 54 | ax-mp 5 | . . . . . . . 8
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))‘0) | 
| 56 |  | iftrue 4531 | . . . . . . . . . 10
⊢ (𝑘 = 0 → if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) = ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) | 
| 57 | 56, 32, 33 | fvmpt 7016 | . . . . . . . . 9
⊢ (0 ∈
ℕ0 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))‘0) = ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) | 
| 58 | 2, 57 | ax-mp 5 | . . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘0) = ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) | 
| 59 | 55, 58 | eqtri 2765 | . . . . . . 7
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘))))‘0) = ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) | 
| 60 | 59 | oveq2i 7442 | . . . . . 6
⊢
((Σ𝑚 ∈
ℕ0 (𝐴‘𝑚) − (𝐴‘0)) + (seq0( + , (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘))))‘0)) = ((Σ𝑚 ∈ ℕ0 (𝐴‘𝑚) − (𝐴‘0)) + ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) | 
| 61 | 1, 2, 4 | sylancl 586 | . . . . . . 7
⊢ (𝜑 → (𝐴‘0) ∈ ℂ) | 
| 62 |  | npncan2 11536 | . . . . . . 7
⊢
((Σ𝑚 ∈
ℕ0 (𝐴‘𝑚) ∈ ℂ ∧ (𝐴‘0) ∈ ℂ) →
((Σ𝑚 ∈
ℕ0 (𝐴‘𝑚) − (𝐴‘0)) + ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) = 0) | 
| 63 | 11, 61, 62 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → ((Σ𝑚 ∈ ℕ0
(𝐴‘𝑚) − (𝐴‘0)) + ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) = 0) | 
| 64 | 60, 63 | eqtrid 2789 | . . . . 5
⊢ (𝜑 → ((Σ𝑚 ∈ ℕ0
(𝐴‘𝑚) − (𝐴‘0)) + (seq0( + , (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘))))‘0)) = 0) | 
| 65 | 53, 64 | breqtrd 5169 | . . . 4
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))) ⇝ 0) | 
| 66 |  | seqex 14044 | . . . . 5
⊢ seq0( + ,
(𝑘 ∈
ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))) ∈ V | 
| 67 |  | c0ex 11255 | . . . . 5
⊢ 0 ∈
V | 
| 68 | 66, 67 | breldm 5919 | . . . 4
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))) ⇝ 0 → seq0( + , (𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))) ∈ dom ⇝ ) | 
| 69 | 65, 68 | syl 17 | . . 3
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))) ∈ dom ⇝ ) | 
| 70 |  | abelth.3 | . . 3
⊢ (𝜑 → 𝑀 ∈ ℝ) | 
| 71 |  | abelth.4 | . . 3
⊢ (𝜑 → 0 ≤ 𝑀) | 
| 72 |  | abelth.5 | . . 3
⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 −
𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} | 
| 73 |  | eqid 2737 | . . 3
⊢ (𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖))) = (𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖))) | 
| 74 | 16, 69, 70, 71, 72, 73, 65 | abelthlem8 26483 | . 2
⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) →
∃𝑤 ∈
ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘(((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦))) < 𝑅)) | 
| 75 | 1, 10, 70, 71, 72 | abelthlem2 26476 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs
∘ − ))1))) | 
| 76 | 75 | simpld 494 | . . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈ 𝑆) | 
| 77 | 76 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 1 ∈ 𝑆) | 
| 78 | 36 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 = 1 ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) = if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖))) | 
| 79 |  | oveq1 7438 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 1 → (𝑥↑𝑖) = (1↑𝑖)) | 
| 80 |  | nn0z 12638 | . . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ℕ0
→ 𝑖 ∈
ℤ) | 
| 81 |  | 1exp 14132 | . . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ℤ →
(1↑𝑖) =
1) | 
| 82 | 80, 81 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ℕ0
→ (1↑𝑖) =
1) | 
| 83 | 79, 82 | sylan9eq 2797 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 = 1 ∧ 𝑖 ∈ ℕ0) → (𝑥↑𝑖) = 1) | 
| 84 | 78, 83 | oveq12d 7449 | . . . . . . . . . . . . . 14
⊢ ((𝑥 = 1 ∧ 𝑖 ∈ ℕ0) → (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)) = (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1)) | 
| 85 | 84 | sumeq2dv 15738 | . . . . . . . . . . . . 13
⊢ (𝑥 = 1 → Σ𝑖 ∈ ℕ0
(((𝑘 ∈
ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)) = Σ𝑖 ∈ ℕ0 (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1)) | 
| 86 |  | sumex 15724 | . . . . . . . . . . . . 13
⊢
Σ𝑖 ∈
ℕ0 (if(𝑖 =
0, ((𝐴‘0) −
Σ𝑚 ∈
ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1) ∈ V | 
| 87 | 85, 73, 86 | fvmpt 7016 | . . . . . . . . . . . 12
⊢ (1 ∈
𝑆 → ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) = Σ𝑖 ∈ ℕ0 (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1)) | 
| 88 | 77, 87 | syl 17 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) = Σ𝑖 ∈ ℕ0 (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1)) | 
| 89 |  | 0zd 12625 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 0 ∈ ℤ) | 
| 90 | 36 | adantl 481 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) = if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖))) | 
| 91 | 61, 11 | subcld 11620 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) ∈ ℂ) | 
| 92 | 91 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)) ∈ ℂ) | 
| 93 | 1 | ffvelcdmda 7104 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝐴‘𝑖) ∈ ℂ) | 
| 94 | 93 | adantlr 715 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → (𝐴‘𝑖) ∈ ℂ) | 
| 95 | 92, 94 | ifcld 4572 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) ∈ ℂ) | 
| 96 | 95 | mulridd 11278 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1) = if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖))) | 
| 97 | 90, 96 | eqtr4d 2780 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) = (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1)) | 
| 98 | 96, 95 | eqeltrd 2841 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1) ∈
ℂ) | 
| 99 |  | oveq1 7438 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 1 → (𝑥↑𝑛) = (1↑𝑛)) | 
| 100 |  | nn0z 12638 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) | 
| 101 |  | 1exp 14132 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ ℤ →
(1↑𝑛) =
1) | 
| 102 | 100, 101 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ℕ0
→ (1↑𝑛) =
1) | 
| 103 | 99, 102 | sylan9eq 2797 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 = 1 ∧ 𝑛 ∈ ℕ0) → (𝑥↑𝑛) = 1) | 
| 104 | 103 | oveq2d 7447 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 = 1 ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘𝑛) · 1)) | 
| 105 | 104 | sumeq2dv 15738 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 1 → Σ𝑛 ∈ ℕ0
((𝐴‘𝑛) · (𝑥↑𝑛)) = Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · 1)) | 
| 106 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑚 → (𝐴‘𝑛) = (𝐴‘𝑚)) | 
| 107 | 106 | oveq1d 7446 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑚 → ((𝐴‘𝑛) · 1) = ((𝐴‘𝑚) · 1)) | 
| 108 | 107 | cbvsumv 15732 | . . . . . . . . . . . . . . . . . . . 20
⊢
Σ𝑛 ∈
ℕ0 ((𝐴‘𝑛) · 1) = Σ𝑚 ∈ ℕ0 ((𝐴‘𝑚) · 1) | 
| 109 | 105, 108 | eqtrdi 2793 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 1 → Σ𝑛 ∈ ℕ0
((𝐴‘𝑛) · (𝑥↑𝑛)) = Σ𝑚 ∈ ℕ0 ((𝐴‘𝑚) · 1)) | 
| 110 |  | abelth.6 | . . . . . . . . . . . . . . . . . . 19
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) | 
| 111 |  | sumex 15724 | . . . . . . . . . . . . . . . . . . 19
⊢
Σ𝑚 ∈
ℕ0 ((𝐴‘𝑚) · 1) ∈ V | 
| 112 | 109, 110,
111 | fvmpt 7016 | . . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
𝑆 → (𝐹‘1) = Σ𝑚 ∈ ℕ0 ((𝐴‘𝑚) · 1)) | 
| 113 | 76, 112 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐹‘1) = Σ𝑚 ∈ ℕ0 ((𝐴‘𝑚) · 1)) | 
| 114 | 9 | mulridd 11278 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝐴‘𝑚) · 1) = (𝐴‘𝑚)) | 
| 115 | 114 | sumeq2dv 15738 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → Σ𝑚 ∈ ℕ0 ((𝐴‘𝑚) · 1) = Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) | 
| 116 | 113, 115 | eqtrd 2777 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹‘1) = Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) | 
| 117 | 116 | oveq1d 7446 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐹‘1) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) = (Σ𝑚 ∈ ℕ0 (𝐴‘𝑚) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) | 
| 118 | 11 | subidd 11608 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (Σ𝑚 ∈ ℕ0 (𝐴‘𝑚) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) = 0) | 
| 119 | 117, 118 | eqtrd 2777 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐹‘1) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) = 0) | 
| 120 | 65, 119 | breqtrrd 5171 | . . . . . . . . . . . . 13
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))) ⇝ ((𝐹‘1) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) | 
| 121 | 120 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq0( + , (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))) ⇝ ((𝐹‘1) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) | 
| 122 | 6, 89, 97, 98, 121 | isumclim 15793 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑖 ∈ ℕ0 (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1) = ((𝐹‘1) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) | 
| 123 | 88, 122 | eqtrd 2777 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) = ((𝐹‘1) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) | 
| 124 |  | oveq1 7438 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝑥↑𝑖) = (𝑦↑𝑖)) | 
| 125 | 36, 124 | oveqan12rd 7451 | . . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑦 ∧ 𝑖 ∈ ℕ0) → (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)) = (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖))) | 
| 126 | 125 | sumeq2dv 15738 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)) = Σ𝑖 ∈ ℕ0 (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖))) | 
| 127 |  | sumex 15724 | . . . . . . . . . . . . 13
⊢
Σ𝑖 ∈
ℕ0 (if(𝑖 =
0, ((𝐴‘0) −
Σ𝑚 ∈
ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖)) ∈ V | 
| 128 | 126, 73, 127 | fvmpt 7016 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑆 → ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦) = Σ𝑖 ∈ ℕ0 (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖))) | 
| 129 | 128 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦) = Σ𝑖 ∈ ℕ0 (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖))) | 
| 130 |  | oveq2 7439 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑖 → (𝑦↑𝑘) = (𝑦↑𝑖)) | 
| 131 | 31, 130 | oveq12d 7449 | . . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑖 → (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)) = (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖))) | 
| 132 |  | eqid 2737 | . . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))) = (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))) | 
| 133 |  | ovex 7464 | . . . . . . . . . . . . . 14
⊢ (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖)) ∈ V | 
| 134 | 131, 132,
133 | fvmpt 7016 | . . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘𝑖) = (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖))) | 
| 135 | 134 | adantl 481 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘𝑖) = (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖))) | 
| 136 | 72 | ssrab3 4082 | . . . . . . . . . . . . . . . 16
⊢ 𝑆 ⊆
ℂ | 
| 137 | 136 | a1i 11 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 ⊆ ℂ) | 
| 138 | 137 | sselda 3983 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ℂ) | 
| 139 |  | expcl 14120 | . . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0)
→ (𝑦↑𝑖) ∈
ℂ) | 
| 140 | 138, 139 | sylan 580 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → (𝑦↑𝑖) ∈ ℂ) | 
| 141 | 95, 140 | mulcld 11281 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖)) ∈ ℂ) | 
| 142 | 2 | a1i 11 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 0 ∈
ℕ0) | 
| 143 | 15 | adantlr 715 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) ∈ ℂ) | 
| 144 |  | expcl 14120 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑦↑𝑘) ∈
ℂ) | 
| 145 | 138, 144 | sylan 580 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) → (𝑦↑𝑘) ∈ ℂ) | 
| 146 | 143, 145 | mulcld 11281 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)) ∈ ℂ) | 
| 147 | 146 | fmpttd 7135 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))):ℕ0⟶ℂ) | 
| 148 | 147 | ffvelcdmda 7104 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘𝑖) ∈ ℂ) | 
| 149 | 41 | oveq1d 7446 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖)) = ((𝐴‘𝑖) · (𝑦↑𝑖))) | 
| 150 | 28, 134 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘𝑖) = (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖))) | 
| 151 | 30, 130 | oveq12d 7449 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑖 → ((𝐴‘𝑘) · (𝑦↑𝑘)) = ((𝐴‘𝑖) · (𝑦↑𝑖))) | 
| 152 |  | eqid 2737 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑦↑𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))) | 
| 153 |  | ovex 7464 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴‘𝑖) · (𝑦↑𝑖)) ∈ V | 
| 154 | 151, 152,
153 | fvmpt 7016 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘𝑖) = ((𝐴‘𝑖) · (𝑦↑𝑖))) | 
| 155 | 28, 154 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘𝑖) = ((𝐴‘𝑖) · (𝑦↑𝑖))) | 
| 156 | 149, 150,
155 | 3eqtr4d 2787 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘𝑖) = ((𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘𝑖)) | 
| 157 | 26, 156 | sylan2br 595 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(0 +
1))) → ((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘𝑖) = ((𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘𝑖)) | 
| 158 | 22, 157 | seqfeq 14068 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → seq(0 + 1)( + , (𝑘 ∈ ℕ0
↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))) = seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))))) | 
| 159 | 158 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))) = seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))))) | 
| 160 | 14 | adantlr 715 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | 
| 161 | 160, 145 | mulcld 11281 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑦↑𝑘)) ∈ ℂ) | 
| 162 | 161 | fmpttd 7135 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))):ℕ0⟶ℂ) | 
| 163 | 162 | ffvelcdmda 7104 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘𝑖) ∈ ℂ) | 
| 164 | 154 | adantl 481 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘𝑖) = ((𝐴‘𝑖) · (𝑦↑𝑖))) | 
| 165 | 94, 140 | mulcld 11281 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝐴‘𝑖) · (𝑦↑𝑖)) ∈ ℂ) | 
| 166 | 1, 10, 70, 71, 72 | abelthlem3 26477 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))) ∈ dom ⇝ ) | 
| 167 | 6, 89, 164, 165, 166 | isumclim2 15794 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))) ⇝ Σ𝑖 ∈ ℕ0 ((𝐴‘𝑖) · (𝑦↑𝑖))) | 
| 168 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑖 → (𝐴‘𝑛) = (𝐴‘𝑖)) | 
| 169 |  | oveq2 7439 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑖 → (𝑥↑𝑛) = (𝑥↑𝑖)) | 
| 170 | 168, 169 | oveq12d 7449 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑖 → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘𝑖) · (𝑥↑𝑖))) | 
| 171 | 170 | cbvsumv 15732 | . . . . . . . . . . . . . . . . . . . . 21
⊢
Σ𝑛 ∈
ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛)) = Σ𝑖 ∈ ℕ0 ((𝐴‘𝑖) · (𝑥↑𝑖)) | 
| 172 | 124 | oveq2d 7447 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑦 → ((𝐴‘𝑖) · (𝑥↑𝑖)) = ((𝐴‘𝑖) · (𝑦↑𝑖))) | 
| 173 | 172 | sumeq2sdv 15739 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑦 → Σ𝑖 ∈ ℕ0 ((𝐴‘𝑖) · (𝑥↑𝑖)) = Σ𝑖 ∈ ℕ0 ((𝐴‘𝑖) · (𝑦↑𝑖))) | 
| 174 | 171, 173 | eqtrid 2789 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑦 → Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛)) = Σ𝑖 ∈ ℕ0 ((𝐴‘𝑖) · (𝑦↑𝑖))) | 
| 175 |  | sumex 15724 | . . . . . . . . . . . . . . . . . . . 20
⊢
Σ𝑖 ∈
ℕ0 ((𝐴‘𝑖) · (𝑦↑𝑖)) ∈ V | 
| 176 | 174, 110,
175 | fvmpt 7016 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ 𝑆 → (𝐹‘𝑦) = Σ𝑖 ∈ ℕ0 ((𝐴‘𝑖) · (𝑦↑𝑖))) | 
| 177 | 176 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝐹‘𝑦) = Σ𝑖 ∈ ℕ0 ((𝐴‘𝑖) · (𝑦↑𝑖))) | 
| 178 | 167, 177 | breqtrrd 5171 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))) ⇝ (𝐹‘𝑦)) | 
| 179 | 6, 142, 163, 178 | clim2ser 15691 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))) ⇝ ((𝐹‘𝑦) − (seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))))‘0))) | 
| 180 |  | seq1 14055 | . . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
ℤ → (seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘0)) | 
| 181 | 47, 180 | ax-mp 5 | . . . . . . . . . . . . . . . . . . 19
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘0) | 
| 182 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 0 → (𝐴‘𝑘) = (𝐴‘0)) | 
| 183 |  | oveq2 7439 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 0 → (𝑦↑𝑘) = (𝑦↑0)) | 
| 184 | 182, 183 | oveq12d 7449 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 0 → ((𝐴‘𝑘) · (𝑦↑𝑘)) = ((𝐴‘0) · (𝑦↑0))) | 
| 185 |  | ovex 7464 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴‘0) · (𝑦↑0)) ∈
V | 
| 186 | 184, 152,
185 | fvmpt 7016 | . . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘0) = ((𝐴‘0) · (𝑦↑0))) | 
| 187 | 2, 186 | ax-mp 5 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘0) = ((𝐴‘0) · (𝑦↑0)) | 
| 188 | 181, 187 | eqtri 2765 | . . . . . . . . . . . . . . . . . 18
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))))‘0) = ((𝐴‘0) · (𝑦↑0)) | 
| 189 | 138 | exp0d 14180 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑦↑0) = 1) | 
| 190 | 189 | oveq2d 7447 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝐴‘0) · (𝑦↑0)) = ((𝐴‘0) · 1)) | 
| 191 | 61 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝐴‘0) ∈ ℂ) | 
| 192 | 191 | mulridd 11278 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝐴‘0) · 1) = (𝐴‘0)) | 
| 193 | 190, 192 | eqtrd 2777 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝐴‘0) · (𝑦↑0)) = (𝐴‘0)) | 
| 194 | 188, 193 | eqtrid 2789 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))))‘0) = (𝐴‘0)) | 
| 195 | 194 | oveq2d 7447 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝐹‘𝑦) − (seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))))‘0)) = ((𝐹‘𝑦) − (𝐴‘0))) | 
| 196 | 179, 195 | breqtrd 5169 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))) ⇝ ((𝐹‘𝑦) − (𝐴‘0))) | 
| 197 | 159, 196 | eqbrtrd 5165 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))) ⇝ ((𝐹‘𝑦) − (𝐴‘0))) | 
| 198 | 6, 142, 148, 197 | clim2ser2 15692 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))) ⇝ (((𝐹‘𝑦) − (𝐴‘0)) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))))‘0))) | 
| 199 |  | seq1 14055 | . . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
ℤ → (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘0)) | 
| 200 | 47, 199 | ax-mp 5 | . . . . . . . . . . . . . . . . 17
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘0) | 
| 201 | 56, 183 | oveq12d 7449 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)) = (((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) · (𝑦↑0))) | 
| 202 |  | ovex 7464 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)) · (𝑦↑0)) ∈ V | 
| 203 | 201, 132,
202 | fvmpt 7016 | . . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
ℕ0 → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘0) = (((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) · (𝑦↑0))) | 
| 204 | 2, 203 | ax-mp 5 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘0) = (((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) · (𝑦↑0)) | 
| 205 | 200, 204 | eqtri 2765 | . . . . . . . . . . . . . . . 16
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))))‘0) = (((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) · (𝑦↑0)) | 
| 206 | 189 | oveq2d 7447 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) · (𝑦↑0)) = (((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) · 1)) | 
| 207 | 11 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑚 ∈ ℕ0 (𝐴‘𝑚) ∈ ℂ) | 
| 208 | 191, 207 | subcld 11620 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) ∈ ℂ) | 
| 209 | 208 | mulridd 11278 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) · 1) = ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) | 
| 210 | 206, 209 | eqtrd 2777 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) · (𝑦↑0)) = ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) | 
| 211 | 205, 210 | eqtrid 2789 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))))‘0) = ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) | 
| 212 | 211 | oveq2d 7447 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝐹‘𝑦) − (𝐴‘0)) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))))‘0)) = (((𝐹‘𝑦) − (𝐴‘0)) + ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)))) | 
| 213 | 1, 10, 70, 71, 72, 110 | abelthlem4 26478 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹:𝑆⟶ℂ) | 
| 214 | 213 | ffvelcdmda 7104 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝐹‘𝑦) ∈ ℂ) | 
| 215 | 214, 191,
207 | npncand 11644 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝐹‘𝑦) − (𝐴‘0)) + ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) = ((𝐹‘𝑦) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) | 
| 216 | 212, 215 | eqtrd 2777 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝐹‘𝑦) − (𝐴‘0)) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))))‘0)) = ((𝐹‘𝑦) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) | 
| 217 | 198, 216 | breqtrd 5169 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))) ⇝ ((𝐹‘𝑦) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) | 
| 218 | 6, 89, 135, 141, 217 | isumclim 15793 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑖 ∈ ℕ0 (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖)) = ((𝐹‘𝑦) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) | 
| 219 | 129, 218 | eqtrd 2777 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦) = ((𝐹‘𝑦) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) | 
| 220 | 123, 219 | oveq12d 7449 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦)) = (((𝐹‘1) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) − ((𝐹‘𝑦) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)))) | 
| 221 | 213 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐹:𝑆⟶ℂ) | 
| 222 | 221, 77 | ffvelcdmd 7105 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝐹‘1) ∈ ℂ) | 
| 223 | 222, 214,
207 | nnncan2d 11655 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝐹‘1) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) − ((𝐹‘𝑦) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) = ((𝐹‘1) − (𝐹‘𝑦))) | 
| 224 | 220, 223 | eqtrd 2777 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦)) = ((𝐹‘1) − (𝐹‘𝑦))) | 
| 225 | 224 | fveq2d 6910 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (abs‘(((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦))) = (abs‘((𝐹‘1) − (𝐹‘𝑦)))) | 
| 226 | 225 | breq1d 5153 | . . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((abs‘(((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦))) < 𝑅 ↔ (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) | 
| 227 | 226 | imbi2d 340 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((abs‘(1 − 𝑦)) < 𝑤 → (abs‘(((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦))) < 𝑅) ↔ ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅))) | 
| 228 | 227 | ralbidva 3176 | . . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘(((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦))) < 𝑅) ↔ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅))) | 
| 229 | 228 | rexbidv 3179 | . . 3
⊢ (𝜑 → (∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘(((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦))) < 𝑅) ↔ ∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅))) | 
| 230 | 229 | adantr 480 | . 2
⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) →
(∃𝑤 ∈
ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘(((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦))) < 𝑅) ↔ ∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅))) | 
| 231 | 74, 230 | mpbid 232 | 1
⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) →
∃𝑤 ∈
ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) |