Step | Hyp | Ref
| Expression |
1 | | abelth.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
2 | | 0nn0 11934 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
3 | 2 | a1i 11 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ 0 ∈ ℕ0) |
4 | | ffvelrn 6833 |
. . . . . . 7
⊢ ((𝐴:ℕ0⟶ℂ ∧ 0
∈ ℕ0) → (𝐴‘0) ∈ ℂ) |
5 | 1, 3, 4 | syl2an 599 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘0) ∈
ℂ) |
6 | | nn0uz 12305 |
. . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) |
7 | | 0zd 12017 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℤ) |
8 | | eqidd 2760 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝐴‘𝑚) = (𝐴‘𝑚)) |
9 | 1 | ffvelrnda 6835 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝐴‘𝑚) ∈ ℂ) |
10 | | abelth.2 |
. . . . . . . 8
⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝
) |
11 | 6, 7, 8, 9, 10 | isumcl 15149 |
. . . . . . 7
⊢ (𝜑 → Σ𝑚 ∈ ℕ0 (𝐴‘𝑚) ∈ ℂ) |
12 | 11 | adantr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
Σ𝑚 ∈
ℕ0 (𝐴‘𝑚) ∈ ℂ) |
13 | 5, 12 | subcld 11020 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)) ∈ ℂ) |
14 | 1 | ffvelrnda 6835 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
15 | 13, 14 | ifcld 4459 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) ∈ ℂ) |
16 | 15 | fmpttd 6863 |
. . 3
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘))):ℕ0⟶ℂ) |
17 | 2 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℕ0) |
18 | 16 | ffvelrnda 6835 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) ∈ ℂ) |
19 | | 1e0p1 12164 |
. . . . . . . . . 10
⊢ 1 = (0 +
1) |
20 | | 1z 12036 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
21 | 19, 20 | eqeltrri 2848 |
. . . . . . . . 9
⊢ (0 + 1)
∈ ℤ |
22 | 21 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (0 + 1) ∈
ℤ) |
23 | | nnuz 12306 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
24 | 19 | fveq2i 6654 |
. . . . . . . . . . 11
⊢
(ℤ≥‘1) = (ℤ≥‘(0 +
1)) |
25 | 23, 24 | eqtri 2782 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘(0 + 1)) |
26 | 25 | eleq2i 2842 |
. . . . . . . . 9
⊢ (𝑖 ∈ ℕ ↔ 𝑖 ∈
(ℤ≥‘(0 + 1))) |
27 | | nnnn0 11926 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℕ0) |
28 | 27 | adantl 486 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0) |
29 | | eqeq1 2763 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → (𝑘 = 0 ↔ 𝑖 = 0)) |
30 | | fveq2 6651 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → (𝐴‘𝑘) = (𝐴‘𝑖)) |
31 | 29, 30 | ifbieq2d 4439 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑖 → if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) = if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖))) |
32 | | eqid 2759 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘))) |
33 | | ovex 7176 |
. . . . . . . . . . . . 13
⊢ ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)) ∈ V |
34 | | fvex 6664 |
. . . . . . . . . . . . 13
⊢ (𝐴‘𝑖) ∈ V |
35 | 33, 34 | ifex 4463 |
. . . . . . . . . . . 12
⊢ if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) ∈ V |
36 | 31, 32, 35 | fvmpt 6752 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) = if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖))) |
37 | 28, 36 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) = if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖))) |
38 | | nnne0 11693 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ → 𝑖 ≠ 0) |
39 | 38 | adantl 486 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ≠ 0) |
40 | 39 | neneqd 2954 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ¬ 𝑖 = 0) |
41 | 40 | iffalsed 4424 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) = (𝐴‘𝑖)) |
42 | 37, 41 | eqtrd 2794 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) = (𝐴‘𝑖)) |
43 | 26, 42 | sylan2br 598 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(0 +
1))) → ((𝑘 ∈
ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) = (𝐴‘𝑖)) |
44 | 22, 43 | seqfeq 13430 |
. . . . . . 7
⊢ (𝜑 → seq(0 + 1)( + , (𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))) = seq(0 + 1)( + , 𝐴)) |
45 | 6, 7, 8, 9, 10 | isumclim2 15146 |
. . . . . . . . 9
⊢ (𝜑 → seq0( + , 𝐴) ⇝ Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)) |
46 | 6, 17, 14, 45 | clim2ser 15044 |
. . . . . . . 8
⊢ (𝜑 → seq(0 + 1)( + , 𝐴) ⇝ (Σ𝑚 ∈ ℕ0
(𝐴‘𝑚) − (seq0( + , 𝐴)‘0))) |
47 | | 0z 12016 |
. . . . . . . . . 10
⊢ 0 ∈
ℤ |
48 | | seq1 13416 |
. . . . . . . . . 10
⊢ (0 ∈
ℤ → (seq0( + , 𝐴)‘0) = (𝐴‘0)) |
49 | 47, 48 | ax-mp 5 |
. . . . . . . . 9
⊢ (seq0( +
, 𝐴)‘0) = (𝐴‘0) |
50 | 49 | oveq2i 7154 |
. . . . . . . 8
⊢
(Σ𝑚 ∈
ℕ0 (𝐴‘𝑚) − (seq0( + , 𝐴)‘0)) = (Σ𝑚 ∈ ℕ0 (𝐴‘𝑚) − (𝐴‘0)) |
51 | 46, 50 | breqtrdi 5066 |
. . . . . . 7
⊢ (𝜑 → seq(0 + 1)( + , 𝐴) ⇝ (Σ𝑚 ∈ ℕ0
(𝐴‘𝑚) − (𝐴‘0))) |
52 | 44, 51 | eqbrtrd 5047 |
. . . . . 6
⊢ (𝜑 → seq(0 + 1)( + , (𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))) ⇝ (Σ𝑚 ∈ ℕ0 (𝐴‘𝑚) − (𝐴‘0))) |
53 | 6, 17, 18, 52 | clim2ser2 15045 |
. . . . 5
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))) ⇝ ((Σ𝑚 ∈ ℕ0 (𝐴‘𝑚) − (𝐴‘0)) + (seq0( + , (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘))))‘0))) |
54 | | seq1 13416 |
. . . . . . . . 9
⊢ (0 ∈
ℤ → (seq0( + , (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))‘0)) |
55 | 47, 54 | ax-mp 5 |
. . . . . . . 8
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))‘0) |
56 | | iftrue 4419 |
. . . . . . . . . 10
⊢ (𝑘 = 0 → if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) = ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) |
57 | 56, 32, 33 | fvmpt 6752 |
. . . . . . . . 9
⊢ (0 ∈
ℕ0 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))‘0) = ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) |
58 | 2, 57 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘0) = ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) |
59 | 55, 58 | eqtri 2782 |
. . . . . . 7
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘))))‘0) = ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) |
60 | 59 | oveq2i 7154 |
. . . . . 6
⊢
((Σ𝑚 ∈
ℕ0 (𝐴‘𝑚) − (𝐴‘0)) + (seq0( + , (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘))))‘0)) = ((Σ𝑚 ∈ ℕ0 (𝐴‘𝑚) − (𝐴‘0)) + ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) |
61 | 1, 2, 4 | sylancl 590 |
. . . . . . 7
⊢ (𝜑 → (𝐴‘0) ∈ ℂ) |
62 | | npncan2 10936 |
. . . . . . 7
⊢
((Σ𝑚 ∈
ℕ0 (𝐴‘𝑚) ∈ ℂ ∧ (𝐴‘0) ∈ ℂ) →
((Σ𝑚 ∈
ℕ0 (𝐴‘𝑚) − (𝐴‘0)) + ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) = 0) |
63 | 11, 61, 62 | syl2anc 588 |
. . . . . 6
⊢ (𝜑 → ((Σ𝑚 ∈ ℕ0
(𝐴‘𝑚) − (𝐴‘0)) + ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) = 0) |
64 | 60, 63 | syl5eq 2806 |
. . . . 5
⊢ (𝜑 → ((Σ𝑚 ∈ ℕ0
(𝐴‘𝑚) − (𝐴‘0)) + (seq0( + , (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘))))‘0)) = 0) |
65 | 53, 64 | breqtrd 5051 |
. . . 4
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))) ⇝ 0) |
66 | | seqex 13405 |
. . . . 5
⊢ seq0( + ,
(𝑘 ∈
ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))) ∈ V |
67 | | c0ex 10658 |
. . . . 5
⊢ 0 ∈
V |
68 | 66, 67 | breldm 5741 |
. . . 4
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))) ⇝ 0 → seq0( + , (𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))) ∈ dom ⇝ ) |
69 | 65, 68 | syl 17 |
. . 3
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))) ∈ dom ⇝ ) |
70 | | abelth.3 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℝ) |
71 | | abelth.4 |
. . 3
⊢ (𝜑 → 0 ≤ 𝑀) |
72 | | abelth.5 |
. . 3
⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 −
𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} |
73 | | eqid 2759 |
. . 3
⊢ (𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖))) = (𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖))) |
74 | 16, 69, 70, 71, 72, 73, 65 | abelthlem8 25118 |
. 2
⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) →
∃𝑤 ∈
ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘(((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦))) < 𝑅)) |
75 | 1, 10, 70, 71, 72 | abelthlem2 25111 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs
∘ − ))1))) |
76 | 75 | simpld 499 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈ 𝑆) |
77 | 76 | adantr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 1 ∈ 𝑆) |
78 | 36 | adantl 486 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = 1 ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) = if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖))) |
79 | | oveq1 7150 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 1 → (𝑥↑𝑖) = (1↑𝑖)) |
80 | | nn0z 12029 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ℕ0
→ 𝑖 ∈
ℤ) |
81 | | 1exp 13493 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ ℤ →
(1↑𝑖) =
1) |
82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ ℕ0
→ (1↑𝑖) =
1) |
83 | 79, 82 | sylan9eq 2814 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = 1 ∧ 𝑖 ∈ ℕ0) → (𝑥↑𝑖) = 1) |
84 | 78, 83 | oveq12d 7161 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 1 ∧ 𝑖 ∈ ℕ0) → (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)) = (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1)) |
85 | 84 | sumeq2dv 15093 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → Σ𝑖 ∈ ℕ0
(((𝑘 ∈
ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)) = Σ𝑖 ∈ ℕ0 (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1)) |
86 | | sumex 15077 |
. . . . . . . . . . . . 13
⊢
Σ𝑖 ∈
ℕ0 (if(𝑖 =
0, ((𝐴‘0) −
Σ𝑚 ∈
ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1) ∈ V |
87 | 85, 73, 86 | fvmpt 6752 |
. . . . . . . . . . . 12
⊢ (1 ∈
𝑆 → ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) = Σ𝑖 ∈ ℕ0 (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1)) |
88 | 77, 87 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) = Σ𝑖 ∈ ℕ0 (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1)) |
89 | | 0zd 12017 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 0 ∈ ℤ) |
90 | 36 | adantl 486 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) = if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖))) |
91 | 61, 11 | subcld 11020 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) ∈ ℂ) |
92 | 91 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)) ∈ ℂ) |
93 | 1 | ffvelrnda 6835 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝐴‘𝑖) ∈ ℂ) |
94 | 93 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → (𝐴‘𝑖) ∈ ℂ) |
95 | 92, 94 | ifcld 4459 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) ∈ ℂ) |
96 | 95 | mulid1d 10681 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1) = if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖))) |
97 | 90, 96 | eqtr4d 2797 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) = (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1)) |
98 | 96, 95 | eqeltrd 2851 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1) ∈
ℂ) |
99 | | oveq1 7150 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 1 → (𝑥↑𝑛) = (1↑𝑛)) |
100 | | nn0z 12029 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
101 | | 1exp 13493 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ ℤ →
(1↑𝑛) =
1) |
102 | 100, 101 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ℕ0
→ (1↑𝑛) =
1) |
103 | 99, 102 | sylan9eq 2814 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 = 1 ∧ 𝑛 ∈ ℕ0) → (𝑥↑𝑛) = 1) |
104 | 103 | oveq2d 7159 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 = 1 ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘𝑛) · 1)) |
105 | 104 | sumeq2dv 15093 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 1 → Σ𝑛 ∈ ℕ0
((𝐴‘𝑛) · (𝑥↑𝑛)) = Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · 1)) |
106 | | fveq2 6651 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑚 → (𝐴‘𝑛) = (𝐴‘𝑚)) |
107 | 106 | oveq1d 7158 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑚 → ((𝐴‘𝑛) · 1) = ((𝐴‘𝑚) · 1)) |
108 | 107 | cbvsumv 15086 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Σ𝑛 ∈
ℕ0 ((𝐴‘𝑛) · 1) = Σ𝑚 ∈ ℕ0 ((𝐴‘𝑚) · 1) |
109 | 105, 108 | eqtrdi 2810 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 1 → Σ𝑛 ∈ ℕ0
((𝐴‘𝑛) · (𝑥↑𝑛)) = Σ𝑚 ∈ ℕ0 ((𝐴‘𝑚) · 1)) |
110 | | abelth.6 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) |
111 | | sumex 15077 |
. . . . . . . . . . . . . . . . . . 19
⊢
Σ𝑚 ∈
ℕ0 ((𝐴‘𝑚) · 1) ∈ V |
112 | 109, 110,
111 | fvmpt 6752 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
𝑆 → (𝐹‘1) = Σ𝑚 ∈ ℕ0 ((𝐴‘𝑚) · 1)) |
113 | 76, 112 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐹‘1) = Σ𝑚 ∈ ℕ0 ((𝐴‘𝑚) · 1)) |
114 | 9 | mulid1d 10681 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝐴‘𝑚) · 1) = (𝐴‘𝑚)) |
115 | 114 | sumeq2dv 15093 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → Σ𝑚 ∈ ℕ0 ((𝐴‘𝑚) · 1) = Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) |
116 | 113, 115 | eqtrd 2794 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹‘1) = Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) |
117 | 116 | oveq1d 7158 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐹‘1) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) = (Σ𝑚 ∈ ℕ0 (𝐴‘𝑚) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) |
118 | 11 | subidd 11008 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (Σ𝑚 ∈ ℕ0 (𝐴‘𝑚) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) = 0) |
119 | 117, 118 | eqtrd 2794 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐹‘1) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) = 0) |
120 | 65, 119 | breqtrrd 5053 |
. . . . . . . . . . . . 13
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))) ⇝ ((𝐹‘1) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) |
121 | 120 | adantr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq0( + , (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)))) ⇝ ((𝐹‘1) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) |
122 | 6, 89, 97, 98, 121 | isumclim 15145 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑖 ∈ ℕ0 (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · 1) = ((𝐹‘1) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) |
123 | 88, 122 | eqtrd 2794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) = ((𝐹‘1) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) |
124 | | oveq1 7150 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝑥↑𝑖) = (𝑦↑𝑖)) |
125 | 36, 124 | oveqan12rd 7163 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝑦 ∧ 𝑖 ∈ ℕ0) → (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)) = (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖))) |
126 | 125 | sumeq2dv 15093 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)) = Σ𝑖 ∈ ℕ0 (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖))) |
127 | | sumex 15077 |
. . . . . . . . . . . . 13
⊢
Σ𝑖 ∈
ℕ0 (if(𝑖 =
0, ((𝐴‘0) −
Σ𝑚 ∈
ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖)) ∈ V |
128 | 126, 73, 127 | fvmpt 6752 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑆 → ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦) = Σ𝑖 ∈ ℕ0 (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖))) |
129 | 128 | adantl 486 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦) = Σ𝑖 ∈ ℕ0 (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖))) |
130 | | oveq2 7151 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑖 → (𝑦↑𝑘) = (𝑦↑𝑖)) |
131 | 31, 130 | oveq12d 7161 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑖 → (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)) = (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖))) |
132 | | eqid 2759 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))) = (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))) |
133 | | ovex 7176 |
. . . . . . . . . . . . . 14
⊢ (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖)) ∈ V |
134 | 131, 132,
133 | fvmpt 6752 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘𝑖) = (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖))) |
135 | 134 | adantl 486 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘𝑖) = (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖))) |
136 | 72 | ssrab3 3982 |
. . . . . . . . . . . . . . . 16
⊢ 𝑆 ⊆
ℂ |
137 | 136 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
138 | 137 | sselda 3888 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ℂ) |
139 | | expcl 13482 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℂ ∧ 𝑖 ∈ ℕ0)
→ (𝑦↑𝑖) ∈
ℂ) |
140 | 138, 139 | sylan 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → (𝑦↑𝑖) ∈ ℂ) |
141 | 95, 140 | mulcld 10684 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖)) ∈ ℂ) |
142 | 2 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 0 ∈
ℕ0) |
143 | 15 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) ∈ ℂ) |
144 | | expcl 13482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑦↑𝑘) ∈
ℂ) |
145 | 138, 144 | sylan 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) → (𝑦↑𝑘) ∈ ℂ) |
146 | 143, 145 | mulcld 10684 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)) ∈ ℂ) |
147 | 146 | fmpttd 6863 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))):ℕ0⟶ℂ) |
148 | 147 | ffvelrnda 6835 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘𝑖) ∈ ℂ) |
149 | 41 | oveq1d 7158 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖)) = ((𝐴‘𝑖) · (𝑦↑𝑖))) |
150 | 28, 134 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘𝑖) = (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖))) |
151 | 30, 130 | oveq12d 7161 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑖 → ((𝐴‘𝑘) · (𝑦↑𝑘)) = ((𝐴‘𝑖) · (𝑦↑𝑖))) |
152 | | eqid 2759 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑦↑𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))) |
153 | | ovex 7176 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴‘𝑖) · (𝑦↑𝑖)) ∈ V |
154 | 151, 152,
153 | fvmpt 6752 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘𝑖) = ((𝐴‘𝑖) · (𝑦↑𝑖))) |
155 | 28, 154 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘𝑖) = ((𝐴‘𝑖) · (𝑦↑𝑖))) |
156 | 149, 150,
155 | 3eqtr4d 2804 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘𝑖) = ((𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘𝑖)) |
157 | 26, 156 | sylan2br 598 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(0 +
1))) → ((𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘𝑖) = ((𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘𝑖)) |
158 | 22, 157 | seqfeq 13430 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → seq(0 + 1)( + , (𝑘 ∈ ℕ0
↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))) = seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))))) |
159 | 158 | adantr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))) = seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))))) |
160 | 14 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
161 | 160, 145 | mulcld 10684 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑦↑𝑘)) ∈ ℂ) |
162 | 161 | fmpttd 6863 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))):ℕ0⟶ℂ) |
163 | 162 | ffvelrnda 6835 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘𝑖) ∈ ℂ) |
164 | 154 | adantl 486 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘𝑖) = ((𝐴‘𝑖) · (𝑦↑𝑖))) |
165 | 94, 140 | mulcld 10684 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑆) ∧ 𝑖 ∈ ℕ0) → ((𝐴‘𝑖) · (𝑦↑𝑖)) ∈ ℂ) |
166 | 1, 10, 70, 71, 72 | abelthlem3 25112 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))) ∈ dom ⇝ ) |
167 | 6, 89, 164, 165, 166 | isumclim2 15146 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))) ⇝ Σ𝑖 ∈ ℕ0 ((𝐴‘𝑖) · (𝑦↑𝑖))) |
168 | | fveq2 6651 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑖 → (𝐴‘𝑛) = (𝐴‘𝑖)) |
169 | | oveq2 7151 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑖 → (𝑥↑𝑛) = (𝑥↑𝑖)) |
170 | 168, 169 | oveq12d 7161 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑖 → ((𝐴‘𝑛) · (𝑥↑𝑛)) = ((𝐴‘𝑖) · (𝑥↑𝑖))) |
171 | 170 | cbvsumv 15086 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Σ𝑛 ∈
ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛)) = Σ𝑖 ∈ ℕ0 ((𝐴‘𝑖) · (𝑥↑𝑖)) |
172 | 124 | oveq2d 7159 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑦 → ((𝐴‘𝑖) · (𝑥↑𝑖)) = ((𝐴‘𝑖) · (𝑦↑𝑖))) |
173 | 172 | sumeq2sdv 15094 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑦 → Σ𝑖 ∈ ℕ0 ((𝐴‘𝑖) · (𝑥↑𝑖)) = Σ𝑖 ∈ ℕ0 ((𝐴‘𝑖) · (𝑦↑𝑖))) |
174 | 171, 173 | syl5eq 2806 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑦 → Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛)) = Σ𝑖 ∈ ℕ0 ((𝐴‘𝑖) · (𝑦↑𝑖))) |
175 | | sumex 15077 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Σ𝑖 ∈
ℕ0 ((𝐴‘𝑖) · (𝑦↑𝑖)) ∈ V |
176 | 174, 110,
175 | fvmpt 6752 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ 𝑆 → (𝐹‘𝑦) = Σ𝑖 ∈ ℕ0 ((𝐴‘𝑖) · (𝑦↑𝑖))) |
177 | 176 | adantl 486 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝐹‘𝑦) = Σ𝑖 ∈ ℕ0 ((𝐴‘𝑖) · (𝑦↑𝑖))) |
178 | 167, 177 | breqtrrd 5053 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))) ⇝ (𝐹‘𝑦)) |
179 | 6, 142, 163, 178 | clim2ser 15044 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))) ⇝ ((𝐹‘𝑦) − (seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))))‘0))) |
180 | | seq1 13416 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
ℤ → (seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘0)) |
181 | 47, 180 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘0) |
182 | | fveq2 6651 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 0 → (𝐴‘𝑘) = (𝐴‘0)) |
183 | | oveq2 7151 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 0 → (𝑦↑𝑘) = (𝑦↑0)) |
184 | 182, 183 | oveq12d 7161 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 0 → ((𝐴‘𝑘) · (𝑦↑𝑘)) = ((𝐴‘0) · (𝑦↑0))) |
185 | | ovex 7176 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴‘0) · (𝑦↑0)) ∈
V |
186 | 184, 152,
185 | fvmpt 6752 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
ℕ0 → ((𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘0) = ((𝐴‘0) · (𝑦↑0))) |
187 | 2, 186 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))‘0) = ((𝐴‘0) · (𝑦↑0)) |
188 | 181, 187 | eqtri 2782 |
. . . . . . . . . . . . . . . . . 18
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))))‘0) = ((𝐴‘0) · (𝑦↑0)) |
189 | 138 | exp0d 13539 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝑦↑0) = 1) |
190 | 189 | oveq2d 7159 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝐴‘0) · (𝑦↑0)) = ((𝐴‘0) · 1)) |
191 | 61 | adantr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝐴‘0) ∈ ℂ) |
192 | 191 | mulid1d 10681 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝐴‘0) · 1) = (𝐴‘0)) |
193 | 190, 192 | eqtrd 2794 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝐴‘0) · (𝑦↑0)) = (𝐴‘0)) |
194 | 188, 193 | syl5eq 2806 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))))‘0) = (𝐴‘0)) |
195 | 194 | oveq2d 7159 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝐹‘𝑦) − (seq0( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘))))‘0)) = ((𝐹‘𝑦) − (𝐴‘0))) |
196 | 179, 195 | breqtrd 5051 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑦↑𝑘)))) ⇝ ((𝐹‘𝑦) − (𝐴‘0))) |
197 | 159, 196 | eqbrtrd 5047 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq(0 + 1)( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))) ⇝ ((𝐹‘𝑦) − (𝐴‘0))) |
198 | 6, 142, 148, 197 | clim2ser2 15045 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))) ⇝ (((𝐹‘𝑦) − (𝐴‘0)) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))))‘0))) |
199 | | seq1 13416 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
ℤ → (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘0)) |
200 | 47, 199 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))))‘0) = ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘0) |
201 | 56, 183 | oveq12d 7161 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)) = (((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) · (𝑦↑0))) |
202 | | ovex 7176 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)) · (𝑦↑0)) ∈ V |
203 | 201, 132,
202 | fvmpt 6752 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
ℕ0 → ((𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘0) = (((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) · (𝑦↑0))) |
204 | 2, 203 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))‘0) = (((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) · (𝑦↑0)) |
205 | 200, 204 | eqtri 2782 |
. . . . . . . . . . . . . . . 16
⊢ (seq0( +
, (𝑘 ∈
ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))))‘0) = (((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) · (𝑦↑0)) |
206 | 189 | oveq2d 7159 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) · (𝑦↑0)) = (((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) · 1)) |
207 | 11 | adantr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑚 ∈ ℕ0 (𝐴‘𝑚) ∈ ℂ) |
208 | 191, 207 | subcld 11020 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) ∈ ℂ) |
209 | 208 | mulid1d 10681 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) · 1) = ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) |
210 | 206, 209 | eqtrd 2794 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) · (𝑦↑0)) = ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) |
211 | 205, 210 | syl5eq 2806 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))))‘0) = ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) |
212 | 211 | oveq2d 7159 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝐹‘𝑦) − (𝐴‘0)) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))))‘0)) = (((𝐹‘𝑦) − (𝐴‘0)) + ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)))) |
213 | 1, 10, 70, 71, 72, 110 | abelthlem4 25113 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
214 | 213 | ffvelrnda 6835 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝐹‘𝑦) ∈ ℂ) |
215 | 214, 191,
207 | npncand 11044 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝐹‘𝑦) − (𝐴‘0)) + ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) = ((𝐹‘𝑦) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) |
216 | 212, 215 | eqtrd 2794 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝐹‘𝑦) − (𝐴‘0)) + (seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘))))‘0)) = ((𝐹‘𝑦) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) |
217 | 198, 216 | breqtrd 5051 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → seq0( + , (𝑘 ∈ ℕ0 ↦ (if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑘)) · (𝑦↑𝑘)))) ⇝ ((𝐹‘𝑦) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) |
218 | 6, 89, 135, 141, 217 | isumclim 15145 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → Σ𝑖 ∈ ℕ0 (if(𝑖 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)), (𝐴‘𝑖)) · (𝑦↑𝑖)) = ((𝐹‘𝑦) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) |
219 | 129, 218 | eqtrd 2794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦) = ((𝐹‘𝑦) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) |
220 | 123, 219 | oveq12d 7161 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦)) = (((𝐹‘1) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) − ((𝐹‘𝑦) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)))) |
221 | 213 | adantr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐹:𝑆⟶ℂ) |
222 | 221, 77 | ffvelrnd 6836 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (𝐹‘1) ∈ ℂ) |
223 | 222, 214,
207 | nnncan2d 11055 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝐹‘1) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚)) − ((𝐹‘𝑦) − Σ𝑚 ∈ ℕ0 (𝐴‘𝑚))) = ((𝐹‘1) − (𝐹‘𝑦))) |
224 | 220, 223 | eqtrd 2794 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦)) = ((𝐹‘1) − (𝐹‘𝑦))) |
225 | 224 | fveq2d 6655 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (abs‘(((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦))) = (abs‘((𝐹‘1) − (𝐹‘𝑦)))) |
226 | 225 | breq1d 5035 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → ((abs‘(((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦))) < 𝑅 ↔ (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) |
227 | 226 | imbi2d 345 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → (((abs‘(1 − 𝑦)) < 𝑤 → (abs‘(((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦))) < 𝑅) ↔ ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅))) |
228 | 227 | ralbidva 3123 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘(((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦))) < 𝑅) ↔ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅))) |
229 | 228 | rexbidv 3219 |
. . 3
⊢ (𝜑 → (∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘(((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦))) < 𝑅) ↔ ∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅))) |
230 | 229 | adantr 485 |
. 2
⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) →
(∃𝑤 ∈
ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘(((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘1) − ((𝑥 ∈ 𝑆 ↦ Σ𝑖 ∈ ℕ0 (((𝑘 ∈ ℕ0
↦ if(𝑘 = 0, ((𝐴‘0) − Σ𝑚 ∈ ℕ0
(𝐴‘𝑚)), (𝐴‘𝑘)))‘𝑖) · (𝑥↑𝑖)))‘𝑦))) < 𝑅) ↔ ∃𝑤 ∈ ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅))) |
231 | 74, 230 | mpbid 235 |
1
⊢ ((𝜑 ∧ 𝑅 ∈ ℝ+) →
∃𝑤 ∈
ℝ+ ∀𝑦 ∈ 𝑆 ((abs‘(1 − 𝑦)) < 𝑤 → (abs‘((𝐹‘1) − (𝐹‘𝑦))) < 𝑅)) |