MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recdiv Structured version   Visualization version   GIF version

Theorem recdiv 11344
Description: The reciprocal of a ratio. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
recdiv (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴))

Proof of Theorem recdiv
StepHypRef Expression
1 1div1e1 11328 . . . 4 (1 / 1) = 1
21oveq1i 7159 . . 3 ((1 / 1) / (𝐴 / 𝐵)) = (1 / (𝐴 / 𝐵))
3 ax-1cn 10593 . . . 4 1 ∈ ℂ
4 ax-1ne0 10604 . . . . 5 1 ≠ 0
53, 4pm3.2i 474 . . . 4 (1 ∈ ℂ ∧ 1 ≠ 0)
6 divdivdiv 11339 . . . 4 (((1 ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 ≠ 0)) ∧ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))) → ((1 / 1) / (𝐴 / 𝐵)) = ((1 · 𝐵) / (1 · 𝐴)))
73, 5, 6mpanl12 701 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((1 / 1) / (𝐴 / 𝐵)) = ((1 · 𝐵) / (1 · 𝐴)))
82, 7syl5eqr 2873 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (1 / (𝐴 / 𝐵)) = ((1 · 𝐵) / (1 · 𝐴)))
9 mulid2 10638 . . . 4 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
10 mulid2 10638 . . . 4 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
119, 10oveqan12rd 7169 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · 𝐵) / (1 · 𝐴)) = (𝐵 / 𝐴))
1211ad2ant2r 746 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((1 · 𝐵) / (1 · 𝐴)) = (𝐵 / 𝐴))
138, 12eqtrd 2859 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3014  (class class class)co 7149  cc 10533  0cc0 10535  1c1 10536   · cmul 10540   / cdiv 11295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296
This theorem is referenced by:  divcan6  11345  recdivd  11431  ledivdiv  11527  ege2le3  15443  ang180lem1  25398  log2tlbnd  25534  basellem5  25673  chebbnd1  26059  chebbnd2  26064  dchrisum0lem2a  26104  mulogsumlem  26118  blocnilem  28590  minvecolem3  28662  nmcexi  29812  poimirlem29  35031  wallispi  42638  reccot  45210  rectan  45211
  Copyright terms: Public domain W3C validator