![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recdiv | Structured version Visualization version GIF version |
Description: The reciprocal of a ratio. (Contributed by NM, 3-Aug-2004.) |
Ref | Expression |
---|---|
recdiv | ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1div1e1 11942 | . . . 4 ⊢ (1 / 1) = 1 | |
2 | 1 | oveq1i 7436 | . . 3 ⊢ ((1 / 1) / (𝐴 / 𝐵)) = (1 / (𝐴 / 𝐵)) |
3 | ax-1cn 11204 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | ax-1ne0 11215 | . . . . 5 ⊢ 1 ≠ 0 | |
5 | 3, 4 | pm3.2i 469 | . . . 4 ⊢ (1 ∈ ℂ ∧ 1 ≠ 0) |
6 | divdivdiv 11953 | . . . 4 ⊢ (((1 ∈ ℂ ∧ (1 ∈ ℂ ∧ 1 ≠ 0)) ∧ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))) → ((1 / 1) / (𝐴 / 𝐵)) = ((1 · 𝐵) / (1 · 𝐴))) | |
7 | 3, 5, 6 | mpanl12 700 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((1 / 1) / (𝐴 / 𝐵)) = ((1 · 𝐵) / (1 · 𝐴))) |
8 | 2, 7 | eqtr3id 2782 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (1 / (𝐴 / 𝐵)) = ((1 · 𝐵) / (1 · 𝐴))) |
9 | mullid 11251 | . . . 4 ⊢ (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵) | |
10 | mullid 11251 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
11 | 9, 10 | oveqan12rd 7446 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · 𝐵) / (1 · 𝐴)) = (𝐵 / 𝐴)) |
12 | 11 | ad2ant2r 745 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((1 · 𝐵) / (1 · 𝐴)) = (𝐵 / 𝐴)) |
13 | 8, 12 | eqtrd 2768 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 (class class class)co 7426 ℂcc 11144 0cc0 11146 1c1 11147 · cmul 11151 / cdiv 11909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 |
This theorem is referenced by: divcan6 11959 recdivd 12045 ledivdiv 12141 ege2le3 16074 ang180lem1 26761 log2tlbnd 26897 basellem5 27037 chebbnd1 27425 chebbnd2 27430 dchrisum0lem2a 27470 mulogsumlem 27484 blocnilem 30634 minvecolem3 30706 nmcexi 31856 poimirlem29 37155 wallispi 45487 reccot 48267 rectan 48268 |
Copyright terms: Public domain | W3C validator |