| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvid | Structured version Visualization version GIF version | ||
| Description: Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvid | ⊢ (ℂ D ( I ↾ ℂ)) = (ℂ × {1}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6820 | . . . 4 ⊢ ( I ↾ ℂ):ℂ–1-1-onto→ℂ | |
| 2 | f1of 6782 | . . . 4 ⊢ (( I ↾ ℂ):ℂ–1-1-onto→ℂ → ( I ↾ ℂ):ℂ⟶ℂ) | |
| 3 | 1, 2 | mp1i 13 | . . 3 ⊢ (⊤ → ( I ↾ ℂ):ℂ⟶ℂ) |
| 4 | simp2 1137 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥) → 𝑧 ∈ ℂ) | |
| 5 | simp1 1136 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥) → 𝑥 ∈ ℂ) | |
| 6 | 4, 5 | subcld 11511 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥) → (𝑧 − 𝑥) ∈ ℂ) |
| 7 | simp3 1138 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥) → 𝑧 ≠ 𝑥) | |
| 8 | 4, 5, 7 | subne0d 11520 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥) → (𝑧 − 𝑥) ≠ 0) |
| 9 | fvresi 7129 | . . . . . . 7 ⊢ (𝑧 ∈ ℂ → (( I ↾ ℂ)‘𝑧) = 𝑧) | |
| 10 | fvresi 7129 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (( I ↾ ℂ)‘𝑥) = 𝑥) | |
| 11 | 9, 10 | oveqan12rd 7389 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((( I ↾ ℂ)‘𝑧) − (( I ↾ ℂ)‘𝑥)) = (𝑧 − 𝑥)) |
| 12 | 11 | 3adant3 1132 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥) → ((( I ↾ ℂ)‘𝑧) − (( I ↾ ℂ)‘𝑥)) = (𝑧 − 𝑥)) |
| 13 | 6, 8, 12 | diveq1bd 11984 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥) → (((( I ↾ ℂ)‘𝑧) − (( I ↾ ℂ)‘𝑥)) / (𝑧 − 𝑥)) = 1) |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → (((( I ↾ ℂ)‘𝑧) − (( I ↾ ℂ)‘𝑥)) / (𝑧 − 𝑥)) = 1) |
| 15 | ax-1cn 11104 | . . 3 ⊢ 1 ∈ ℂ | |
| 16 | 3, 14, 15 | dvidlem 25850 | . 2 ⊢ (⊤ → (ℂ D ( I ↾ ℂ)) = (ℂ × {1})) |
| 17 | 16 | mptru 1547 | 1 ⊢ (ℂ D ( I ↾ ℂ)) = (ℂ × {1}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 {csn 4585 I cid 5525 × cxp 5629 ↾ cres 5633 ⟶wf 6495 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 ℂcc 11044 1c1 11047 − cmin 11383 / cdiv 11813 D cdv 25798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fi 9338 df-sup 9369 df-inf 9370 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-q 12886 df-rp 12930 df-xneg 13050 df-xadd 13051 df-xmul 13052 df-icc 13291 df-fz 13447 df-seq 13945 df-exp 14005 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17094 df-slot 17129 df-ndx 17141 df-base 17157 df-plusg 17210 df-mulr 17211 df-starv 17212 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-rest 17362 df-topn 17363 df-topgen 17383 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-fbas 21294 df-fg 21295 df-cnfld 21298 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-cld 22940 df-ntr 22941 df-cls 22942 df-nei 23019 df-lp 23057 df-perf 23058 df-cn 23148 df-cnp 23149 df-haus 23236 df-fil 23767 df-fm 23859 df-flim 23860 df-flf 23861 df-xms 24242 df-ms 24243 df-cncf 24805 df-limc 25801 df-dv 25802 |
| This theorem is referenced by: dvexp 25891 dvmptid 25895 dvsid 44314 |
| Copyright terms: Public domain | W3C validator |