Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvid | Structured version Visualization version GIF version |
Description: Derivative of the identity function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
dvid | ⊢ (ℂ D ( I ↾ ℂ)) = (ℂ × {1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6644 | . . . 4 ⊢ ( I ↾ ℂ):ℂ–1-1-onto→ℂ | |
2 | f1of 6607 | . . . 4 ⊢ (( I ↾ ℂ):ℂ–1-1-onto→ℂ → ( I ↾ ℂ):ℂ⟶ℂ) | |
3 | 1, 2 | mp1i 13 | . . 3 ⊢ (⊤ → ( I ↾ ℂ):ℂ⟶ℂ) |
4 | simp2 1134 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥) → 𝑧 ∈ ℂ) | |
5 | simp1 1133 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥) → 𝑥 ∈ ℂ) | |
6 | 4, 5 | subcld 11048 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥) → (𝑧 − 𝑥) ∈ ℂ) |
7 | simp3 1135 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥) → 𝑧 ≠ 𝑥) | |
8 | 4, 5, 7 | subne0d 11057 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥) → (𝑧 − 𝑥) ≠ 0) |
9 | fvresi 6932 | . . . . . . 7 ⊢ (𝑧 ∈ ℂ → (( I ↾ ℂ)‘𝑧) = 𝑧) | |
10 | fvresi 6932 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (( I ↾ ℂ)‘𝑥) = 𝑥) | |
11 | 9, 10 | oveqan12rd 7176 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((( I ↾ ℂ)‘𝑧) − (( I ↾ ℂ)‘𝑥)) = (𝑧 − 𝑥)) |
12 | 11 | 3adant3 1129 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥) → ((( I ↾ ℂ)‘𝑧) − (( I ↾ ℂ)‘𝑥)) = (𝑧 − 𝑥)) |
13 | 6, 8, 12 | diveq1bd 11515 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥) → (((( I ↾ ℂ)‘𝑧) − (( I ↾ ℂ)‘𝑥)) / (𝑧 − 𝑥)) = 1) |
14 | 13 | adantl 485 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → (((( I ↾ ℂ)‘𝑧) − (( I ↾ ℂ)‘𝑥)) / (𝑧 − 𝑥)) = 1) |
15 | ax-1cn 10646 | . . 3 ⊢ 1 ∈ ℂ | |
16 | 3, 14, 15 | dvidlem 24628 | . 2 ⊢ (⊤ → (ℂ D ( I ↾ ℂ)) = (ℂ × {1})) |
17 | 16 | mptru 1545 | 1 ⊢ (ℂ D ( I ↾ ℂ)) = (ℂ × {1}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1084 = wceq 1538 ⊤wtru 1539 ∈ wcel 2111 ≠ wne 2951 {csn 4525 I cid 5433 × cxp 5526 ↾ cres 5530 ⟶wf 6336 –1-1-onto→wf1o 6339 ‘cfv 6340 (class class class)co 7156 ℂcc 10586 1c1 10589 − cmin 10921 / cdiv 11348 D cdv 24576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-pm 8425 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fi 8921 df-sup 8952 df-inf 8953 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-icc 12799 df-fz 12953 df-seq 13432 df-exp 13493 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-plusg 16650 df-mulr 16651 df-starv 16652 df-tset 16656 df-ple 16657 df-ds 16659 df-unif 16660 df-rest 16768 df-topn 16769 df-topgen 16789 df-psmet 20172 df-xmet 20173 df-met 20174 df-bl 20175 df-mopn 20176 df-fbas 20177 df-fg 20178 df-cnfld 20181 df-top 21608 df-topon 21625 df-topsp 21647 df-bases 21660 df-cld 21733 df-ntr 21734 df-cls 21735 df-nei 21812 df-lp 21850 df-perf 21851 df-cn 21941 df-cnp 21942 df-haus 22029 df-fil 22560 df-fm 22652 df-flim 22653 df-flf 22654 df-xms 23036 df-ms 23037 df-cncf 23593 df-limc 24579 df-dv 24580 |
This theorem is referenced by: dvexp 24666 dvmptid 24670 dvsid 41453 |
Copyright terms: Public domain | W3C validator |