Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsscmap Structured version   Visualization version   GIF version

Theorem rhmsscmap 44311
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020.)
Hypotheses
Ref Expression
rhmsscmap.u (𝜑𝑈𝑉)
rhmsscmap.r (𝜑𝑅 = (Ring ∩ 𝑈))
Assertion
Ref Expression
rhmsscmap (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem rhmsscmap
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmsscmap.r . . 3 (𝜑𝑅 = (Ring ∩ 𝑈))
2 inss2 4206 . . 3 (Ring ∩ 𝑈) ⊆ 𝑈
31, 2eqsstrdi 4021 . 2 (𝜑𝑅𝑈)
4 eqid 2821 . . . . . . 7 (Base‘𝑎) = (Base‘𝑎)
5 eqid 2821 . . . . . . 7 (Base‘𝑏) = (Base‘𝑏)
64, 5rhmf 19478 . . . . . 6 ( ∈ (𝑎 RingHom 𝑏) → :(Base‘𝑎)⟶(Base‘𝑏))
7 simpr 487 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → :(Base‘𝑎)⟶(Base‘𝑏))
8 fvex 6683 . . . . . . . . . 10 (Base‘𝑏) ∈ V
9 fvex 6683 . . . . . . . . . 10 (Base‘𝑎) ∈ V
108, 9pm3.2i 473 . . . . . . . . 9 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
11 elmapg 8419 . . . . . . . . 9 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
1210, 11mp1i 13 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
137, 12mpbird 259 . . . . . . 7 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))
1413ex 415 . . . . . 6 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (:(Base‘𝑎)⟶(Base‘𝑏) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
156, 14syl5 34 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → ( ∈ (𝑎 RingHom 𝑏) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
1615ssrdv 3973 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎 RingHom 𝑏) ⊆ ((Base‘𝑏) ↑m (Base‘𝑎)))
17 ovres 7314 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RingHom 𝑏))
1817adantl 484 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RingHom 𝑏))
19 eqidd 2822 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
20 fveq2 6670 . . . . . . 7 (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏))
21 fveq2 6670 . . . . . . 7 (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎))
2220, 21oveqan12rd 7176 . . . . . 6 ((𝑥 = 𝑎𝑦 = 𝑏) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2322adantl 484 . . . . 5 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
243sseld 3966 . . . . . . . 8 (𝜑 → (𝑎𝑅𝑎𝑈))
2524com12 32 . . . . . . 7 (𝑎𝑅 → (𝜑𝑎𝑈))
2625adantr 483 . . . . . 6 ((𝑎𝑅𝑏𝑅) → (𝜑𝑎𝑈))
2726impcom 410 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → 𝑎𝑈)
283sseld 3966 . . . . . . . 8 (𝜑 → (𝑏𝑅𝑏𝑈))
2928com12 32 . . . . . . 7 (𝑏𝑅 → (𝜑𝑏𝑈))
3029adantl 484 . . . . . 6 ((𝑎𝑅𝑏𝑅) → (𝜑𝑏𝑈))
3130impcom 410 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → 𝑏𝑈)
32 ovexd 7191 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → ((Base‘𝑏) ↑m (Base‘𝑎)) ∈ V)
3319, 23, 27, 31, 32ovmpod 7302 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
3416, 18, 333sstr4d 4014 . . 3 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))
3534ralrimivva 3191 . 2 (𝜑 → ∀𝑎𝑅𝑏𝑅 (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))
36 rhmfn 44209 . . . . 5 RingHom Fn (Ring × Ring)
3736a1i 11 . . . 4 (𝜑 → RingHom Fn (Ring × Ring))
38 inss1 4205 . . . . . 6 (Ring ∩ 𝑈) ⊆ Ring
391, 38eqsstrdi 4021 . . . . 5 (𝜑𝑅 ⊆ Ring)
40 xpss12 5570 . . . . 5 ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring))
4139, 39, 40syl2anc 586 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring))
42 fnssres 6470 . . . 4 (( RingHom Fn (Ring × Ring) ∧ (𝑅 × 𝑅) ⊆ (Ring × Ring)) → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
4337, 41, 42syl2anc 586 . . 3 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
44 eqid 2821 . . . . 5 (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))
45 ovex 7189 . . . . 5 ((Base‘𝑦) ↑m (Base‘𝑥)) ∈ V
4644, 45fnmpoi 7768 . . . 4 (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑈 × 𝑈)
4746a1i 11 . . 3 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑈 × 𝑈))
48 rhmsscmap.u . . . 4 (𝜑𝑈𝑉)
49 elex 3512 . . . 4 (𝑈𝑉𝑈 ∈ V)
5048, 49syl 17 . . 3 (𝜑𝑈 ∈ V)
5143, 47, 50isssc 17090 . 2 (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ↔ (𝑅𝑈 ∧ ∀𝑎𝑅𝑏𝑅 (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))))
523, 35, 51mpbir2and 711 1 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  cin 3935  wss 3936   class class class wbr 5066   × cxp 5553  cres 5557   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  m cmap 8406  Basecbs 16483  cat cssc 17077  Ringcrg 19297   RingHom crh 19464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-0g 16715  df-ssc 17080  df-mhm 17956  df-ghm 18356  df-mgp 19240  df-ur 19252  df-ring 19299  df-rnghom 19467
This theorem is referenced by:  rhmsubcsetc  44314
  Copyright terms: Public domain W3C validator