Step | Hyp | Ref
| Expression |
1 | | rhmsscmap.r |
. . 3
⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
2 | | inss2 4160 |
. . 3
⊢ (Ring
∩ 𝑈) ⊆ 𝑈 |
3 | 1, 2 | eqsstrdi 3971 |
. 2
⊢ (𝜑 → 𝑅 ⊆ 𝑈) |
4 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑎) =
(Base‘𝑎) |
5 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑏) =
(Base‘𝑏) |
6 | 4, 5 | rhmf 19885 |
. . . . . 6
⊢ (ℎ ∈ (𝑎 RingHom 𝑏) → ℎ:(Base‘𝑎)⟶(Base‘𝑏)) |
7 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) ∧ ℎ:(Base‘𝑎)⟶(Base‘𝑏)) → ℎ:(Base‘𝑎)⟶(Base‘𝑏)) |
8 | | fvex 6769 |
. . . . . . . . . 10
⊢
(Base‘𝑏)
∈ V |
9 | | fvex 6769 |
. . . . . . . . . 10
⊢
(Base‘𝑎)
∈ V |
10 | 8, 9 | pm3.2i 470 |
. . . . . . . . 9
⊢
((Base‘𝑏)
∈ V ∧ (Base‘𝑎) ∈ V) |
11 | | elmapg 8586 |
. . . . . . . . 9
⊢
(((Base‘𝑏)
∈ V ∧ (Base‘𝑎) ∈ V) → (ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ ℎ:(Base‘𝑎)⟶(Base‘𝑏))) |
12 | 10, 11 | mp1i 13 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) ∧ ℎ:(Base‘𝑎)⟶(Base‘𝑏)) → (ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ ℎ:(Base‘𝑎)⟶(Base‘𝑏))) |
13 | 7, 12 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) ∧ ℎ:(Base‘𝑎)⟶(Base‘𝑏)) → ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) |
14 | 13 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (ℎ:(Base‘𝑎)⟶(Base‘𝑏) → ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))) |
15 | 6, 14 | syl5 34 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (ℎ ∈ (𝑎 RingHom 𝑏) → ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))) |
16 | 15 | ssrdv 3923 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (𝑎 RingHom 𝑏) ⊆ ((Base‘𝑏) ↑m (Base‘𝑎))) |
17 | | ovres 7416 |
. . . . 5
⊢ ((𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RingHom 𝑏)) |
18 | 17 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RingHom 𝑏)) |
19 | | eqidd 2739 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
20 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏)) |
21 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎)) |
22 | 20, 21 | oveqan12rd 7275 |
. . . . . 6
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m
(Base‘𝑎))) |
23 | 22 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) ∧ (𝑥 = 𝑎 ∧ 𝑦 = 𝑏)) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m
(Base‘𝑎))) |
24 | 3 | sseld 3916 |
. . . . . . . 8
⊢ (𝜑 → (𝑎 ∈ 𝑅 → 𝑎 ∈ 𝑈)) |
25 | 24 | com12 32 |
. . . . . . 7
⊢ (𝑎 ∈ 𝑅 → (𝜑 → 𝑎 ∈ 𝑈)) |
26 | 25 | adantr 480 |
. . . . . 6
⊢ ((𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅) → (𝜑 → 𝑎 ∈ 𝑈)) |
27 | 26 | impcom 407 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → 𝑎 ∈ 𝑈) |
28 | 3 | sseld 3916 |
. . . . . . . 8
⊢ (𝜑 → (𝑏 ∈ 𝑅 → 𝑏 ∈ 𝑈)) |
29 | 28 | com12 32 |
. . . . . . 7
⊢ (𝑏 ∈ 𝑅 → (𝜑 → 𝑏 ∈ 𝑈)) |
30 | 29 | adantl 481 |
. . . . . 6
⊢ ((𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅) → (𝜑 → 𝑏 ∈ 𝑈)) |
31 | 30 | impcom 407 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → 𝑏 ∈ 𝑈) |
32 | | ovexd 7290 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → ((Base‘𝑏) ↑m (Base‘𝑎)) ∈ V) |
33 | 19, 23, 27, 31, 32 | ovmpod 7403 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (𝑎(𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎))) |
34 | 16, 18, 33 | 3sstr4d 3964 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏)) |
35 | 34 | ralrimivva 3114 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ 𝑅 ∀𝑏 ∈ 𝑅 (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏)) |
36 | | rhmfn 45364 |
. . . . 5
⊢ RingHom
Fn (Ring × Ring) |
37 | 36 | a1i 11 |
. . . 4
⊢ (𝜑 → RingHom Fn (Ring ×
Ring)) |
38 | | inss1 4159 |
. . . . . 6
⊢ (Ring
∩ 𝑈) ⊆
Ring |
39 | 1, 38 | eqsstrdi 3971 |
. . . . 5
⊢ (𝜑 → 𝑅 ⊆ Ring) |
40 | | xpss12 5595 |
. . . . 5
⊢ ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring ×
Ring)) |
41 | 39, 39, 40 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝑅 × 𝑅) ⊆ (Ring ×
Ring)) |
42 | | fnssres 6539 |
. . . 4
⊢ ((
RingHom Fn (Ring × Ring) ∧ (𝑅 × 𝑅) ⊆ (Ring × Ring)) → (
RingHom ↾ (𝑅 ×
𝑅)) Fn (𝑅 × 𝑅)) |
43 | 37, 41, 42 | syl2anc 583 |
. . 3
⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅)) |
44 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) |
45 | | ovex 7288 |
. . . . 5
⊢
((Base‘𝑦)
↑m (Base‘𝑥)) ∈ V |
46 | 44, 45 | fnmpoi 7883 |
. . . 4
⊢ (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑈 × 𝑈) |
47 | 46 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑈 × 𝑈)) |
48 | | rhmsscmap.u |
. . . 4
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
49 | | elex 3440 |
. . . 4
⊢ (𝑈 ∈ 𝑉 → 𝑈 ∈ V) |
50 | 48, 49 | syl 17 |
. . 3
⊢ (𝜑 → 𝑈 ∈ V) |
51 | 43, 47, 50 | isssc 17449 |
. 2
⊢ (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ↔ (𝑅 ⊆ 𝑈 ∧ ∀𝑎 ∈ 𝑅 ∀𝑏 ∈ 𝑅 (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏)))) |
52 | 3, 35, 51 | mpbir2and 709 |
1
⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |