MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmsscmap Structured version   Visualization version   GIF version

Theorem rhmsscmap 20563
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of extensible structures (in the same universe). (Contributed by AV, 9-Mar-2020.)
Hypotheses
Ref Expression
rhmsscmap.u (𝜑𝑈𝑉)
rhmsscmap.r (𝜑𝑅 = (Ring ∩ 𝑈))
Assertion
Ref Expression
rhmsscmap (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem rhmsscmap
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmsscmap.r . . 3 (𝜑𝑅 = (Ring ∩ 𝑈))
2 inss2 4191 . . 3 (Ring ∩ 𝑈) ⊆ 𝑈
31, 2eqsstrdi 3982 . 2 (𝜑𝑅𝑈)
4 eqid 2729 . . . . . . 7 (Base‘𝑎) = (Base‘𝑎)
5 eqid 2729 . . . . . . 7 (Base‘𝑏) = (Base‘𝑏)
64, 5rhmf 20389 . . . . . 6 ( ∈ (𝑎 RingHom 𝑏) → :(Base‘𝑎)⟶(Base‘𝑏))
7 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → :(Base‘𝑎)⟶(Base‘𝑏))
8 fvex 6839 . . . . . . . . . 10 (Base‘𝑏) ∈ V
9 fvex 6839 . . . . . . . . . 10 (Base‘𝑎) ∈ V
108, 9pm3.2i 470 . . . . . . . . 9 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
11 elmapg 8773 . . . . . . . . 9 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
1210, 11mp1i 13 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ( ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
137, 12mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))
1413ex 412 . . . . . 6 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (:(Base‘𝑎)⟶(Base‘𝑏) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
156, 14syl5 34 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → ( ∈ (𝑎 RingHom 𝑏) → ∈ ((Base‘𝑏) ↑m (Base‘𝑎))))
1615ssrdv 3943 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎 RingHom 𝑏) ⊆ ((Base‘𝑏) ↑m (Base‘𝑎)))
17 ovres 7519 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RingHom 𝑏))
1817adantl 481 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RingHom 𝑏))
19 eqidd 2730 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
20 fveq2 6826 . . . . . . 7 (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏))
21 fveq2 6826 . . . . . . 7 (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎))
2220, 21oveqan12rd 7373 . . . . . 6 ((𝑥 = 𝑎𝑦 = 𝑏) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
2322adantl 481 . . . . 5 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m (Base‘𝑎)))
243sseld 3936 . . . . . . . 8 (𝜑 → (𝑎𝑅𝑎𝑈))
2524com12 32 . . . . . . 7 (𝑎𝑅 → (𝜑𝑎𝑈))
2625adantr 480 . . . . . 6 ((𝑎𝑅𝑏𝑅) → (𝜑𝑎𝑈))
2726impcom 407 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → 𝑎𝑈)
283sseld 3936 . . . . . . . 8 (𝜑 → (𝑏𝑅𝑏𝑈))
2928com12 32 . . . . . . 7 (𝑏𝑅 → (𝜑𝑏𝑈))
3029adantl 481 . . . . . 6 ((𝑎𝑅𝑏𝑅) → (𝜑𝑏𝑈))
3130impcom 407 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → 𝑏𝑈)
32 ovexd 7388 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → ((Base‘𝑏) ↑m (Base‘𝑎)) ∈ V)
3319, 23, 27, 31, 32ovmpod 7505 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎)))
3416, 18, 333sstr4d 3993 . . 3 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))
3534ralrimivva 3172 . 2 (𝜑 → ∀𝑎𝑅𝑏𝑅 (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))
36 rhmfn 20403 . . . . 5 RingHom Fn (Ring × Ring)
3736a1i 11 . . . 4 (𝜑 → RingHom Fn (Ring × Ring))
38 inss1 4190 . . . . . 6 (Ring ∩ 𝑈) ⊆ Ring
391, 38eqsstrdi 3982 . . . . 5 (𝜑𝑅 ⊆ Ring)
40 xpss12 5638 . . . . 5 ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring))
4139, 39, 40syl2anc 584 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring))
42 fnssres 6609 . . . 4 (( RingHom Fn (Ring × Ring) ∧ (𝑅 × 𝑅) ⊆ (Ring × Ring)) → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
4337, 41, 42syl2anc 584 . . 3 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
44 eqid 2729 . . . . 5 (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))
45 ovex 7386 . . . . 5 ((Base‘𝑦) ↑m (Base‘𝑥)) ∈ V
4644, 45fnmpoi 8012 . . . 4 (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑈 × 𝑈)
4746a1i 11 . . 3 (𝜑 → (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑈 × 𝑈))
48 rhmsscmap.u . . . 4 (𝜑𝑈𝑉)
49 elex 3459 . . . 4 (𝑈𝑉𝑈 ∈ V)
5048, 49syl 17 . . 3 (𝜑𝑈 ∈ V)
5143, 47, 50isssc 17746 . 2 (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ↔ (𝑅𝑈 ∧ ∀𝑎𝑅𝑏𝑅 (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏))))
523, 35, 51mpbir2and 713 1 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  cin 3904  wss 3905   class class class wbr 5095   × cxp 5621  cres 5625   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355  m cmap 8760  Basecbs 17139  cat cssc 17733  Ringcrg 20137   RingHom crh 20373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-plusg 17193  df-0g 17364  df-ssc 17736  df-mhm 18676  df-ghm 19111  df-mgp 20045  df-ur 20086  df-ring 20139  df-rhm 20376
This theorem is referenced by:  rhmsubcsetc  20566
  Copyright terms: Public domain W3C validator