MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divgcdcoprm0 Structured version   Visualization version   GIF version

Theorem divgcdcoprm0 16106
Description: Integers divided by gcd are coprime. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprm0 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)

Proof of Theorem divgcdcoprm0
Dummy variables 𝑎 𝑏 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcddvds 15946 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
213adant3 1133 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
3 gcdcl 15949 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
43nn0zd 12166 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
5 simpl 486 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
64, 5jca 515 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ))
763adant3 1133 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ))
8 divides 15701 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴))
97, 8syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴))
10 simpr 488 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
114, 10jca 515 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ))
12113adant3 1133 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ))
13 divides 15701 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵))
1412, 13syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵))
159, 14anbi12d 634 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) ↔ (∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵)))
16 bezout 15987 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)))
17163adant3 1133 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)))
18 oveq1 7177 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) = (𝐴 · 𝑚))
19 oveq1 7177 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛) = (𝐵 · 𝑛))
2018, 19oveqan12rd 7190 . . . . . . . . . . . . . . . . . . 19 (((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴) → (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)))
2120eqeq2d 2749 . . . . . . . . . . . . . . . . . 18 (((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴) → ((𝐴 gcd 𝐵) = (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) ↔ (𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛))))
2221bicomd 226 . . . . . . . . . . . . . . . . 17 (((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) ↔ (𝐴 gcd 𝐵) = (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛))))
23 simpl 486 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℤ)
2423zcnd 12169 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℂ)
2524adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℂ)
263nn0cnd 12038 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
27263adant3 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℂ)
2827ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℂ)
29 simpl 486 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℤ)
3029zcnd 12169 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℂ)
3130ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑚 ∈ ℂ)
3225, 28, 31mul32d 10928 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) = ((𝑎 · 𝑚) · (𝐴 gcd 𝐵)))
33 simpr 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
3433zcnd 12169 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
3534adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℂ)
36 simpr 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
3736zcnd 12169 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ)
3837ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑛 ∈ ℂ)
3935, 28, 38mul32d 10928 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛) = ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)))
4032, 39oveq12d 7188 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) = (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))))
4140eqeq2d 2749 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) = (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) ↔ (𝐴 gcd 𝐵) = (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)))))
4223adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ)
4329ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑚 ∈ ℤ)
4442, 43zmulcld 12174 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑚) ∈ ℤ)
4543adant3 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℤ)
4645ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℤ)
4744, 46zmulcld 12174 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) ∈ ℤ)
4833adantl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ)
4936ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑛 ∈ ℤ)
5048, 49zmulcld 12174 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑏 · 𝑛) ∈ ℤ)
5133adant3 1133 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ0)
5251ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℕ0)
5352nn0zd 12166 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℤ)
5450, 53zmulcld 12174 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) ∈ ℤ)
5547, 54zaddcld 12172 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) ∈ ℤ)
5655zcnd 12169 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) ∈ ℂ)
57 gcd2n0cl 15952 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ)
58 nnrp 12483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 gcd 𝐵) ∈ ℕ → (𝐴 gcd 𝐵) ∈ ℝ+)
5958rpcnne0d 12523 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0))
6057, 59syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0))
6160ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0))
62 div11 11404 . . . . . . . . . . . . . . . . . . 19 (((𝐴 gcd 𝐵) ∈ ℂ ∧ (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) ∈ ℂ ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → (((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) ↔ (𝐴 gcd 𝐵) = (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)))))
6328, 56, 61, 62syl3anc 1372 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) ↔ (𝐴 gcd 𝐵) = (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)))))
64 divid 11405 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
6561, 64syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
6647zcnd 12169 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) ∈ ℂ)
6754zcnd 12169 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) ∈ ℂ)
68 divdir 11401 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) ∈ ℂ ∧ ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) ∈ ℂ ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) + (((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵))))
6966, 67, 61, 68syl3anc 1372 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) + (((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵))))
7044zcnd 12169 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑚) ∈ ℂ)
7151nn0cnd 12038 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℂ)
7271ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℂ)
7357nnne0d 11766 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ≠ 0)
7473ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ≠ 0)
7570, 72, 74divcan4d 11500 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) = (𝑎 · 𝑚))
7650zcnd 12169 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑏 · 𝑛) ∈ ℂ)
7776, 28, 74divcan4d 11500 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) = (𝑏 · 𝑛))
7875, 77oveq12d 7188 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) + (((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵))) = ((𝑎 · 𝑚) + (𝑏 · 𝑛)))
7969, 78eqtrd 2773 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) = ((𝑎 · 𝑚) + (𝑏 · 𝑛)))
8065, 79eqeq12d 2754 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) ↔ 1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛))))
8141, 63, 803bitr2d 310 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) = (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) ↔ 1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛))))
8222, 81sylan9bbr 514 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) ↔ 1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛))))
83 eqcom 2745 . . . . . . . . . . . . . . . . . 18 (1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛)) ↔ ((𝑎 · 𝑚) + (𝑏 · 𝑛)) = 1)
84 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ))
8584anim1ci 619 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)))
86 bezoutr1 16010 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (((𝑎 · 𝑚) + (𝑏 · 𝑛)) = 1 → (𝑎 gcd 𝑏) = 1))
8785, 86syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · 𝑚) + (𝑏 · 𝑛)) = 1 → (𝑎 gcd 𝑏) = 1))
8887adantr 484 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → (((𝑎 · 𝑚) + (𝑏 · 𝑛)) = 1 → (𝑎 gcd 𝑏) = 1))
8983, 88syl5bi 245 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → (1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛)) → (𝑎 gcd 𝑏) = 1))
90 simpll1 1213 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐴 ∈ ℤ)
9190zcnd 12169 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐴 ∈ ℂ)
92 divmul3 11381 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎𝐴 = (𝑎 · (𝐴 gcd 𝐵))))
9391, 25, 61, 92syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎𝐴 = (𝑎 · (𝐴 gcd 𝐵))))
94 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (𝐴 / (𝐴 gcd 𝐵)) ↔ (𝐴 / (𝐴 gcd 𝐵)) = 𝑎)
95 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
9693, 94, 953bitr4g 317 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 = (𝐴 / (𝐴 gcd 𝐵)) ↔ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴))
9796biimprd 251 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴𝑎 = (𝐴 / (𝐴 gcd 𝐵))))
9897a1d 25 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴𝑎 = (𝐴 / (𝐴 gcd 𝐵)))))
9998imp32 422 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → 𝑎 = (𝐴 / (𝐴 gcd 𝐵)))
100 simp2 1138 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℤ)
101100zcnd 12169 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
102101ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐵 ∈ ℂ)
103 divmul3 11381 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → ((𝐵 / (𝐴 gcd 𝐵)) = 𝑏𝐵 = (𝑏 · (𝐴 gcd 𝐵))))
104102, 35, 61, 103syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐵 / (𝐴 gcd 𝐵)) = 𝑏𝐵 = (𝑏 · (𝐴 gcd 𝐵))))
105 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝐵 / (𝐴 gcd 𝐵)) ↔ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏)
106 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵𝐵 = (𝑏 · (𝐴 gcd 𝐵)))
107104, 105, 1063bitr4g 317 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑏 = (𝐵 / (𝐴 gcd 𝐵)) ↔ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵))
108107biimprd 251 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵𝑏 = (𝐵 / (𝐴 gcd 𝐵))))
109108a1dd 50 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴𝑏 = (𝐵 / (𝐴 gcd 𝐵)))))
110109imp32 422 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → 𝑏 = (𝐵 / (𝐴 gcd 𝐵)))
11199, 110oveq12d 7188 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → (𝑎 gcd 𝑏) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
112111eqeq1d 2740 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → ((𝑎 gcd 𝑏) = 1 ↔ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
11389, 112sylibd 242 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → (1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
11482, 113sylbid 243 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
115114exp32 424 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))))
116115com34 91 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))))
117116com23 86 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))))
118117ex 416 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))))
119118com23 86 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))))
120119rexlimdvva 3204 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))))
12117, 120mpd 15 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))))
122121impl 459 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))
123122rexlimdva 3194 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))
124123com23 86 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑎 ∈ ℤ) → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → (∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))
125124rexlimdva 3194 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → (∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))
126125impd 414 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
12715, 126sylbid 243 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
1282, 127mpd 15 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  wrex 3054   class class class wbr 5030  (class class class)co 7170  cc 10613  0cc0 10615  1c1 10616   + caddc 10618   · cmul 10620   / cdiv 11375  cn 11716  0cn0 11976  cz 12062  cdvds 15699   gcd cgcd 15937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-fl 13253  df-mod 13329  df-seq 13461  df-exp 13522  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-dvds 15700  df-gcd 15938
This theorem is referenced by:  divgcdcoprmex  16107  nna4b4nsq  40069
  Copyright terms: Public domain W3C validator