MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divgcdcoprm0 Structured version   Visualization version   GIF version

Theorem divgcdcoprm0 16642
Description: Integers divided by gcd are coprime. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprm0 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)

Proof of Theorem divgcdcoprm0
Dummy variables 𝑎 𝑏 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcddvds 16480 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
213adant3 1132 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
3 gcdcl 16483 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
43nn0zd 12562 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
5 simpl 482 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
64, 5jca 511 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ))
763adant3 1132 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ))
8 divides 16231 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴))
97, 8syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴))
10 simpr 484 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
114, 10jca 511 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ))
12113adant3 1132 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ))
13 divides 16231 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵))
1412, 13syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵))
159, 14anbi12d 632 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) ↔ (∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵)))
16 bezout 16520 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)))
17163adant3 1132 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)))
18 oveq1 7397 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) = (𝐴 · 𝑚))
19 oveq1 7397 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛) = (𝐵 · 𝑛))
2018, 19oveqan12rd 7410 . . . . . . . . . . . . . . . . . . 19 (((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴) → (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)))
2120eqeq2d 2741 . . . . . . . . . . . . . . . . . 18 (((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴) → ((𝐴 gcd 𝐵) = (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) ↔ (𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛))))
2221bicomd 223 . . . . . . . . . . . . . . . . 17 (((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) ↔ (𝐴 gcd 𝐵) = (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛))))
23 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℤ)
2423zcnd 12646 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℂ)
2524adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℂ)
263nn0cnd 12512 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
27263adant3 1132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℂ)
2827ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℂ)
29 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℤ)
3029zcnd 12646 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℂ)
3130ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑚 ∈ ℂ)
3225, 28, 31mul32d 11391 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) = ((𝑎 · 𝑚) · (𝐴 gcd 𝐵)))
33 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
3433zcnd 12646 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
3534adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℂ)
36 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
3736zcnd 12646 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ)
3837ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑛 ∈ ℂ)
3935, 28, 38mul32d 11391 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛) = ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)))
4032, 39oveq12d 7408 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) = (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))))
4140eqeq2d 2741 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) = (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) ↔ (𝐴 gcd 𝐵) = (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)))))
4223adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ)
4329ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑚 ∈ ℤ)
4442, 43zmulcld 12651 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑚) ∈ ℤ)
4543adant3 1132 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℤ)
4645ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℤ)
4744, 46zmulcld 12651 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) ∈ ℤ)
4833adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ)
4936ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑛 ∈ ℤ)
5048, 49zmulcld 12651 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑏 · 𝑛) ∈ ℤ)
5133adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ0)
5251ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℕ0)
5352nn0zd 12562 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℤ)
5450, 53zmulcld 12651 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) ∈ ℤ)
5547, 54zaddcld 12649 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) ∈ ℤ)
5655zcnd 12646 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) ∈ ℂ)
57 gcd2n0cl 16486 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ)
58 nnrp 12970 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 gcd 𝐵) ∈ ℕ → (𝐴 gcd 𝐵) ∈ ℝ+)
5958rpcnne0d 13011 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0))
6057, 59syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0))
6160ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0))
62 div11 11872 . . . . . . . . . . . . . . . . . . 19 (((𝐴 gcd 𝐵) ∈ ℂ ∧ (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) ∈ ℂ ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → (((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) ↔ (𝐴 gcd 𝐵) = (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)))))
6328, 56, 61, 62syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) ↔ (𝐴 gcd 𝐵) = (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)))))
64 divid 11875 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
6561, 64syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
6647zcnd 12646 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) ∈ ℂ)
6754zcnd 12646 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) ∈ ℂ)
68 divdir 11869 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) ∈ ℂ ∧ ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) ∈ ℂ ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) + (((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵))))
6966, 67, 61, 68syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) + (((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵))))
7044zcnd 12646 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑚) ∈ ℂ)
7151nn0cnd 12512 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℂ)
7271ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℂ)
7357nnne0d 12243 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ≠ 0)
7473ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ≠ 0)
7570, 72, 74divcan4d 11971 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) = (𝑎 · 𝑚))
7650zcnd 12646 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑏 · 𝑛) ∈ ℂ)
7776, 28, 74divcan4d 11971 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) = (𝑏 · 𝑛))
7875, 77oveq12d 7408 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) + (((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵))) = ((𝑎 · 𝑚) + (𝑏 · 𝑛)))
7969, 78eqtrd 2765 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) = ((𝑎 · 𝑚) + (𝑏 · 𝑛)))
8065, 79eqeq12d 2746 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) ↔ 1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛))))
8141, 63, 803bitr2d 307 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) = (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) ↔ 1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛))))
8222, 81sylan9bbr 510 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) ↔ 1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛))))
83 eqcom 2737 . . . . . . . . . . . . . . . . . 18 (1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛)) ↔ ((𝑎 · 𝑚) + (𝑏 · 𝑛)) = 1)
84 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ))
8584anim1ci 616 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)))
86 bezoutr1 16546 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (((𝑎 · 𝑚) + (𝑏 · 𝑛)) = 1 → (𝑎 gcd 𝑏) = 1))
8785, 86syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · 𝑚) + (𝑏 · 𝑛)) = 1 → (𝑎 gcd 𝑏) = 1))
8887adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → (((𝑎 · 𝑚) + (𝑏 · 𝑛)) = 1 → (𝑎 gcd 𝑏) = 1))
8983, 88biimtrid 242 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → (1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛)) → (𝑎 gcd 𝑏) = 1))
90 simpll1 1213 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐴 ∈ ℤ)
9190zcnd 12646 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐴 ∈ ℂ)
92 divmul3 11849 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎𝐴 = (𝑎 · (𝐴 gcd 𝐵))))
9391, 25, 61, 92syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎𝐴 = (𝑎 · (𝐴 gcd 𝐵))))
94 eqcom 2737 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (𝐴 / (𝐴 gcd 𝐵)) ↔ (𝐴 / (𝐴 gcd 𝐵)) = 𝑎)
95 eqcom 2737 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
9693, 94, 953bitr4g 314 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 = (𝐴 / (𝐴 gcd 𝐵)) ↔ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴))
9796biimprd 248 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴𝑎 = (𝐴 / (𝐴 gcd 𝐵))))
9897a1d 25 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴𝑎 = (𝐴 / (𝐴 gcd 𝐵)))))
9998imp32 418 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → 𝑎 = (𝐴 / (𝐴 gcd 𝐵)))
100 simp2 1137 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℤ)
101100zcnd 12646 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
102101ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐵 ∈ ℂ)
103 divmul3 11849 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → ((𝐵 / (𝐴 gcd 𝐵)) = 𝑏𝐵 = (𝑏 · (𝐴 gcd 𝐵))))
104102, 35, 61, 103syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐵 / (𝐴 gcd 𝐵)) = 𝑏𝐵 = (𝑏 · (𝐴 gcd 𝐵))))
105 eqcom 2737 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝐵 / (𝐴 gcd 𝐵)) ↔ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏)
106 eqcom 2737 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵𝐵 = (𝑏 · (𝐴 gcd 𝐵)))
107104, 105, 1063bitr4g 314 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑏 = (𝐵 / (𝐴 gcd 𝐵)) ↔ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵))
108107biimprd 248 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵𝑏 = (𝐵 / (𝐴 gcd 𝐵))))
109108a1dd 50 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴𝑏 = (𝐵 / (𝐴 gcd 𝐵)))))
110109imp32 418 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → 𝑏 = (𝐵 / (𝐴 gcd 𝐵)))
11199, 110oveq12d 7408 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → (𝑎 gcd 𝑏) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
112111eqeq1d 2732 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → ((𝑎 gcd 𝑏) = 1 ↔ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
11389, 112sylibd 239 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → (1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
11482, 113sylbid 240 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
115114exp32 420 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))))
116115com34 91 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))))
117116com23 86 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))))
118117ex 412 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))))
119118com23 86 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))))
120119rexlimdvva 3195 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))))
12117, 120mpd 15 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))))
122121impl 455 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))
123122rexlimdva 3135 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))
124123com23 86 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑎 ∈ ℤ) → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → (∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))
125124rexlimdva 3135 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → (∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))
126125impd 410 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
12715, 126sylbid 240 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
1282, 127mpd 15 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cdvds 16229   gcd cgcd 16471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472
This theorem is referenced by:  divgcdcoprmex  16643  elq2  32743  nna4b4nsq  42655
  Copyright terms: Public domain W3C validator