MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divgcdcoprm0 Structured version   Visualization version   GIF version

Theorem divgcdcoprm0 16370
Description: Integers divided by gcd are coprime. (Contributed by AV, 12-Jul-2021.)
Assertion
Ref Expression
divgcdcoprm0 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)

Proof of Theorem divgcdcoprm0
Dummy variables 𝑎 𝑏 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcddvds 16210 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
213adant3 1131 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
3 gcdcl 16213 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℕ0)
43nn0zd 12424 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℤ)
5 simpl 483 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
64, 5jca 512 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ))
763adant3 1131 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ))
8 divides 15965 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴))
97, 8syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴))
10 simpr 485 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
114, 10jca 512 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ))
12113adant3 1131 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ))
13 divides 15965 . . . . 5 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵))
1412, 13syl 17 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵))
159, 14anbi12d 631 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) ↔ (∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵)))
16 bezout 16251 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)))
17163adant3 1131 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)))
18 oveq1 7282 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) = (𝐴 · 𝑚))
19 oveq1 7282 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛) = (𝐵 · 𝑛))
2018, 19oveqan12rd 7295 . . . . . . . . . . . . . . . . . . 19 (((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴) → (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)))
2120eqeq2d 2749 . . . . . . . . . . . . . . . . . 18 (((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴) → ((𝐴 gcd 𝐵) = (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) ↔ (𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛))))
2221bicomd 222 . . . . . . . . . . . . . . . . 17 (((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) ↔ (𝐴 gcd 𝐵) = (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛))))
23 simpl 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℤ)
2423zcnd 12427 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑎 ∈ ℂ)
2524adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℂ)
263nn0cnd 12295 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) ∈ ℂ)
27263adant3 1131 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℂ)
2827ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℂ)
29 simpl 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℤ)
3029zcnd 12427 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑚 ∈ ℂ)
3130ad2antlr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑚 ∈ ℂ)
3225, 28, 31mul32d 11185 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) = ((𝑎 · 𝑚) · (𝐴 gcd 𝐵)))
33 simpr 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
3433zcnd 12427 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℂ)
3534adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℂ)
36 simpr 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
3736zcnd 12427 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ)
3837ad2antlr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑛 ∈ ℂ)
3935, 28, 38mul32d 11185 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛) = ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)))
4032, 39oveq12d 7293 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) = (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))))
4140eqeq2d 2749 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) = (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) ↔ (𝐴 gcd 𝐵) = (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)))))
4223adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑎 ∈ ℤ)
4329ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑚 ∈ ℤ)
4442, 43zmulcld 12432 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑚) ∈ ℤ)
4543adant3 1131 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℤ)
4645ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℤ)
4744, 46zmulcld 12432 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) ∈ ℤ)
4833adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑏 ∈ ℤ)
4936ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝑛 ∈ ℤ)
5048, 49zmulcld 12432 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑏 · 𝑛) ∈ ℤ)
5133adant3 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ0)
5251ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℕ0)
5352nn0zd 12424 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℤ)
5450, 53zmulcld 12432 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) ∈ ℤ)
5547, 54zaddcld 12430 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) ∈ ℤ)
5655zcnd 12427 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) ∈ ℂ)
57 gcd2n0cl 16216 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℕ)
58 nnrp 12741 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 gcd 𝐵) ∈ ℕ → (𝐴 gcd 𝐵) ∈ ℝ+)
5958rpcnne0d 12781 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0))
6057, 59syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0))
6160ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0))
62 div11 11661 . . . . . . . . . . . . . . . . . . 19 (((𝐴 gcd 𝐵) ∈ ℂ ∧ (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) ∈ ℂ ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → (((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) ↔ (𝐴 gcd 𝐵) = (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)))))
6328, 56, 61, 62syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) ↔ (𝐴 gcd 𝐵) = (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)))))
64 divid 11662 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
6561, 64syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1)
6647zcnd 12427 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) ∈ ℂ)
6754zcnd 12427 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) ∈ ℂ)
68 divdir 11658 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) ∈ ℂ ∧ ((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) ∈ ℂ ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) + (((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵))))
6966, 67, 61, 68syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) + (((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵))))
7044zcnd 12427 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 · 𝑚) ∈ ℂ)
7151nn0cnd 12295 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ∈ ℂ)
7271ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ∈ ℂ)
7357nnne0d 12023 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 gcd 𝐵) ≠ 0)
7473ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝐴 gcd 𝐵) ≠ 0)
7570, 72, 74divcan4d 11757 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) = (𝑎 · 𝑚))
7650zcnd 12427 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑏 · 𝑛) ∈ ℂ)
7776, 28, 74divcan4d 11757 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) = (𝑏 · 𝑛))
7875, 77oveq12d 7293 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵)) + (((𝑏 · 𝑛) · (𝐴 gcd 𝐵)) / (𝐴 gcd 𝐵))) = ((𝑎 · 𝑚) + (𝑏 · 𝑛)))
7969, 78eqtrd 2778 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) = ((𝑎 · 𝑚) + (𝑏 · 𝑛)))
8065, 79eqeq12d 2754 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((((𝑎 · 𝑚) · (𝐴 gcd 𝐵)) + ((𝑏 · 𝑛) · (𝐴 gcd 𝐵))) / (𝐴 gcd 𝐵)) ↔ 1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛))))
8141, 63, 803bitr2d 307 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) = (((𝑎 · (𝐴 gcd 𝐵)) · 𝑚) + ((𝑏 · (𝐴 gcd 𝐵)) · 𝑛)) ↔ 1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛))))
8222, 81sylan9bbr 511 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) ↔ 1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛))))
83 eqcom 2745 . . . . . . . . . . . . . . . . . 18 (1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛)) ↔ ((𝑎 · 𝑚) + (𝑏 · 𝑛)) = 1)
84 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ))
8584anim1ci 616 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)))
86 bezoutr1 16274 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (((𝑎 · 𝑚) + (𝑏 · 𝑛)) = 1 → (𝑎 gcd 𝑏) = 1))
8785, 86syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑎 · 𝑚) + (𝑏 · 𝑛)) = 1 → (𝑎 gcd 𝑏) = 1))
8887adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → (((𝑎 · 𝑚) + (𝑏 · 𝑛)) = 1 → (𝑎 gcd 𝑏) = 1))
8983, 88syl5bi 241 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → (1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛)) → (𝑎 gcd 𝑏) = 1))
90 simpll1 1211 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐴 ∈ ℤ)
9190zcnd 12427 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐴 ∈ ℂ)
92 divmul3 11638 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎𝐴 = (𝑎 · (𝐴 gcd 𝐵))))
9391, 25, 61, 92syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 / (𝐴 gcd 𝐵)) = 𝑎𝐴 = (𝑎 · (𝐴 gcd 𝐵))))
94 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (𝐴 / (𝐴 gcd 𝐵)) ↔ (𝐴 / (𝐴 gcd 𝐵)) = 𝑎)
95 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴𝐴 = (𝑎 · (𝐴 gcd 𝐵)))
9693, 94, 953bitr4g 314 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑎 = (𝐴 / (𝐴 gcd 𝐵)) ↔ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴))
9796biimprd 247 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴𝑎 = (𝐴 / (𝐴 gcd 𝐵))))
9897a1d 25 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴𝑎 = (𝐴 / (𝐴 gcd 𝐵)))))
9998imp32 419 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → 𝑎 = (𝐴 / (𝐴 gcd 𝐵)))
100 simp2 1136 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℤ)
101100zcnd 12427 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
102101ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → 𝐵 ∈ ℂ)
103 divmul3 11638 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ ((𝐴 gcd 𝐵) ∈ ℂ ∧ (𝐴 gcd 𝐵) ≠ 0)) → ((𝐵 / (𝐴 gcd 𝐵)) = 𝑏𝐵 = (𝑏 · (𝐴 gcd 𝐵))))
104102, 35, 61, 103syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐵 / (𝐴 gcd 𝐵)) = 𝑏𝐵 = (𝑏 · (𝐴 gcd 𝐵))))
105 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = (𝐵 / (𝐴 gcd 𝐵)) ↔ (𝐵 / (𝐴 gcd 𝐵)) = 𝑏)
106 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵𝐵 = (𝑏 · (𝐴 gcd 𝐵)))
107104, 105, 1063bitr4g 314 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (𝑏 = (𝐵 / (𝐴 gcd 𝐵)) ↔ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵))
108107biimprd 247 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵𝑏 = (𝐵 / (𝐴 gcd 𝐵))))
109108a1dd 50 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴𝑏 = (𝐵 / (𝐴 gcd 𝐵)))))
110109imp32 419 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → 𝑏 = (𝐵 / (𝐴 gcd 𝐵)))
11199, 110oveq12d 7293 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → (𝑎 gcd 𝑏) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))
112111eqeq1d 2740 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → ((𝑎 gcd 𝑏) = 1 ↔ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
11389, 112sylibd 238 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → (1 = ((𝑎 · 𝑚) + (𝑏 · 𝑛)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
11482, 113sylbid 239 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) ∧ ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 ∧ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴)) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
115114exp32 421 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))))
116115com34 91 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))))
117116com23 86 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))))
118117ex 413 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))))
119118com23 86 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))))
120119rexlimdvva 3223 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑚) + (𝐵 · 𝑛)) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))))
12117, 120mpd 15 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))))
122121impl 456 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑎 ∈ ℤ) ∧ 𝑏 ∈ ℤ) → ((𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))
123122rexlimdva 3213 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑎 ∈ ℤ) → (∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))
124123com23 86 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ 𝑎 ∈ ℤ) → ((𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → (∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))
125124rexlimdva 3213 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴 → (∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵 → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)))
126125impd 411 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((∃𝑎 ∈ ℤ (𝑎 · (𝐴 gcd 𝐵)) = 𝐴 ∧ ∃𝑏 ∈ ℤ (𝑏 · (𝐴 gcd 𝐵)) = 𝐵) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
12715, 126sylbid 239 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1))
1282, 127mpd 15 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065   class class class wbr 5074  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  cdvds 15963   gcd cgcd 16201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202
This theorem is referenced by:  divgcdcoprmex  16371  nna4b4nsq  40497
  Copyright terms: Public domain W3C validator