![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > estrchom | Structured version Visualization version GIF version |
Description: The morphisms between extensible structures are mappings between their base sets. (Contributed by AV, 7-Mar-2020.) |
Ref | Expression |
---|---|
estrcbas.c | β’ πΆ = (ExtStrCatβπ) |
estrcbas.u | β’ (π β π β π) |
estrchomfval.h | β’ π» = (Hom βπΆ) |
estrchom.x | β’ (π β π β π) |
estrchom.y | β’ (π β π β π) |
estrchom.a | β’ π΄ = (Baseβπ) |
estrchom.b | β’ π΅ = (Baseβπ) |
Ref | Expression |
---|---|
estrchom | β’ (π β (ππ»π) = (π΅ βm π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | estrcbas.c | . . 3 β’ πΆ = (ExtStrCatβπ) | |
2 | estrcbas.u | . . 3 β’ (π β π β π) | |
3 | estrchomfval.h | . . 3 β’ π» = (Hom βπΆ) | |
4 | 1, 2, 3 | estrchomfval 18089 | . 2 β’ (π β π» = (π₯ β π, π¦ β π β¦ ((Baseβπ¦) βm (Baseβπ₯)))) |
5 | fveq2 6885 | . . . . 5 β’ (π¦ = π β (Baseβπ¦) = (Baseβπ)) | |
6 | fveq2 6885 | . . . . 5 β’ (π₯ = π β (Baseβπ₯) = (Baseβπ)) | |
7 | 5, 6 | oveqan12rd 7425 | . . . 4 β’ ((π₯ = π β§ π¦ = π) β ((Baseβπ¦) βm (Baseβπ₯)) = ((Baseβπ) βm (Baseβπ))) |
8 | estrchom.b | . . . . 5 β’ π΅ = (Baseβπ) | |
9 | estrchom.a | . . . . 5 β’ π΄ = (Baseβπ) | |
10 | 8, 9 | oveq12i 7417 | . . . 4 β’ (π΅ βm π΄) = ((Baseβπ) βm (Baseβπ)) |
11 | 7, 10 | eqtr4di 2784 | . . 3 β’ ((π₯ = π β§ π¦ = π) β ((Baseβπ¦) βm (Baseβπ₯)) = (π΅ βm π΄)) |
12 | 11 | adantl 481 | . 2 β’ ((π β§ (π₯ = π β§ π¦ = π)) β ((Baseβπ¦) βm (Baseβπ₯)) = (π΅ βm π΄)) |
13 | estrchom.x | . 2 β’ (π β π β π) | |
14 | estrchom.y | . 2 β’ (π β π β π) | |
15 | ovexd 7440 | . 2 β’ (π β (π΅ βm π΄) β V) | |
16 | 4, 12, 13, 14, 15 | ovmpod 7556 | 1 β’ (π β (ππ»π) = (π΅ βm π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 Vcvv 3468 βcfv 6537 (class class class)co 7405 βm cmap 8822 Basecbs 17153 Hom chom 17217 ExtStrCatcestrc 18085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-struct 17089 df-slot 17124 df-ndx 17136 df-base 17154 df-hom 17230 df-cco 17231 df-estrc 18086 |
This theorem is referenced by: elestrchom 18091 funcestrcsetclem8 18111 funcestrcsetclem9 18112 fthestrcsetc 18114 fullestrcsetc 18115 funcsetcestrclem8 18126 |
Copyright terms: Public domain | W3C validator |