MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimdiv Structured version   Visualization version   GIF version

Theorem rlimdiv 14994
Description: Limit of the quotient of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
rlimadd.4 ((𝜑𝑥𝐴) → 𝐶𝑉)
rlimadd.5 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimadd.6 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
rlimdiv.7 (𝜑𝐸 ≠ 0)
rlimdiv.8 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
Assertion
Ref Expression
rlimdiv (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) ⇝𝑟 (𝐷 / 𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥   𝑥,𝐸
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem rlimdiv
Dummy variables 𝑤 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimadd.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
2 rlimadd.5 . . . 4 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
31, 2rlimmptrcl 14956 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4 rlimadd.4 . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝑉)
5 rlimadd.6 . . . . 5 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
64, 5rlimmptrcl 14956 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
7 rlimdiv.8 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
86, 7reccld 11398 . . 3 ((𝜑𝑥𝐴) → (1 / 𝐶) ∈ ℂ)
9 eldifsn 4680 . . . . . . 7 (𝐶 ∈ (ℂ ∖ {0}) ↔ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
106, 7, 9sylanbrc 586 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ (ℂ ∖ {0}))
1110fmpttd 6856 . . . . 5 (𝜑 → (𝑥𝐴𝐶):𝐴⟶(ℂ ∖ {0}))
12 rlimcl 14852 . . . . . . 7 ((𝑥𝐴𝐶) ⇝𝑟 𝐸𝐸 ∈ ℂ)
135, 12syl 17 . . . . . 6 (𝜑𝐸 ∈ ℂ)
14 rlimdiv.7 . . . . . 6 (𝜑𝐸 ≠ 0)
15 eldifsn 4680 . . . . . 6 (𝐸 ∈ (ℂ ∖ {0}) ↔ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
1613, 14, 15sylanbrc 586 . . . . 5 (𝜑𝐸 ∈ (ℂ ∖ {0}))
17 eldifsn 4680 . . . . . . . 8 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
18 reccl 11294 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈ ℂ)
1917, 18sylbi 220 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) → (1 / 𝑦) ∈ ℂ)
2019adantl 485 . . . . . 6 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (1 / 𝑦) ∈ ℂ)
2120fmpttd 6856 . . . . 5 (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)):(ℂ ∖ {0})⟶ℂ)
22 eqid 2798 . . . . . . . 8 (if(1 ≤ ((abs‘𝐸) · 𝑧), 1, ((abs‘𝐸) · 𝑧)) · ((abs‘𝐸) / 2)) = (if(1 ≤ ((abs‘𝐸) · 𝑧), 1, ((abs‘𝐸) · 𝑧)) · ((abs‘𝐸) / 2))
2322reccn2 14945 . . . . . . 7 ((𝐸 ∈ (ℂ ∖ {0}) ∧ 𝑧 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧))
2416, 23sylan 583 . . . . . 6 ((𝜑𝑧 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧))
25 oveq2 7143 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (1 / 𝑦) = (1 / 𝑣))
26 eqid 2798 . . . . . . . . . . . . . 14 (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))
27 ovex 7168 . . . . . . . . . . . . . 14 (1 / 𝑣) ∈ V
2825, 26, 27fvmpt 6745 . . . . . . . . . . . . 13 (𝑣 ∈ (ℂ ∖ {0}) → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) = (1 / 𝑣))
29 oveq2 7143 . . . . . . . . . . . . . . 15 (𝑦 = 𝐸 → (1 / 𝑦) = (1 / 𝐸))
30 ovex 7168 . . . . . . . . . . . . . . 15 (1 / 𝐸) ∈ V
3129, 26, 30fvmpt 6745 . . . . . . . . . . . . . 14 (𝐸 ∈ (ℂ ∖ {0}) → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸) = (1 / 𝐸))
3216, 31syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸) = (1 / 𝐸))
3328, 32oveqan12rd 7155 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → (((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸)) = ((1 / 𝑣) − (1 / 𝐸)))
3433fveq2d 6649 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) = (abs‘((1 / 𝑣) − (1 / 𝐸))))
3534breq1d 5040 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → ((abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧 ↔ (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧))
3635imbi2d 344 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → (((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧) ↔ ((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)))
3736ralbidva 3161 . . . . . . . 8 (𝜑 → (∀𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧) ↔ ∀𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)))
3837rexbidv 3256 . . . . . . 7 (𝜑 → (∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧) ↔ ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)))
3938biimpar 481 . . . . . 6 ((𝜑 ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧))
4024, 39syldan 594 . . . . 5 ((𝜑𝑧 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧))
4111, 16, 5, 21, 40rlimcn1 14937 . . . 4 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝐴𝐶)) ⇝𝑟 ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))
42 eqidd 2799 . . . . 5 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
43 eqidd 2799 . . . . 5 (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)))
44 oveq2 7143 . . . . 5 (𝑦 = 𝐶 → (1 / 𝑦) = (1 / 𝐶))
4510, 42, 43, 44fmptco 6868 . . . 4 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (1 / 𝐶)))
4641, 45, 323brtr3d 5061 . . 3 (𝜑 → (𝑥𝐴 ↦ (1 / 𝐶)) ⇝𝑟 (1 / 𝐸))
473, 8, 2, 46rlimmul 14993 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))) ⇝𝑟 (𝐷 · (1 / 𝐸)))
483, 6, 7divrecd 11408 . . 3 ((𝜑𝑥𝐴) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
4948mpteq2dva 5125 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) = (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))))
50 rlimcl 14852 . . . 4 ((𝑥𝐴𝐵) ⇝𝑟 𝐷𝐷 ∈ ℂ)
512, 50syl 17 . . 3 (𝜑𝐷 ∈ ℂ)
5251, 13, 14divrecd 11408 . 2 (𝜑 → (𝐷 / 𝐸) = (𝐷 · (1 / 𝐸)))
5347, 49, 523brtr4d 5062 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) ⇝𝑟 (𝐷 / 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  cdif 3878  ifcif 4425  {csn 4525   class class class wbr 5030  cmpt 5110  ccom 5523  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  +crp 12377  abscabs 14585  𝑟 crli 14834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-rlim 14838
This theorem is referenced by:  logexprlim  25809  chebbnd2  26061  chto1lb  26062  pnt2  26197  pnt  26198
  Copyright terms: Public domain W3C validator