MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimdiv Structured version   Visualization version   GIF version

Theorem rlimdiv 14996
Description: Limit of the quotient of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
rlimadd.4 ((𝜑𝑥𝐴) → 𝐶𝑉)
rlimadd.5 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimadd.6 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
rlimdiv.7 (𝜑𝐸 ≠ 0)
rlimdiv.8 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
Assertion
Ref Expression
rlimdiv (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) ⇝𝑟 (𝐷 / 𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥   𝑥,𝐸
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem rlimdiv
Dummy variables 𝑤 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimadd.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
2 rlimadd.5 . . . 4 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
31, 2rlimmptrcl 14958 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4 rlimadd.4 . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝑉)
5 rlimadd.6 . . . . 5 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
64, 5rlimmptrcl 14958 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
7 rlimdiv.8 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
86, 7reccld 11403 . . 3 ((𝜑𝑥𝐴) → (1 / 𝐶) ∈ ℂ)
9 eldifsn 4712 . . . . . . 7 (𝐶 ∈ (ℂ ∖ {0}) ↔ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
106, 7, 9sylanbrc 585 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ (ℂ ∖ {0}))
1110fmpttd 6873 . . . . 5 (𝜑 → (𝑥𝐴𝐶):𝐴⟶(ℂ ∖ {0}))
12 rlimcl 14854 . . . . . . 7 ((𝑥𝐴𝐶) ⇝𝑟 𝐸𝐸 ∈ ℂ)
135, 12syl 17 . . . . . 6 (𝜑𝐸 ∈ ℂ)
14 rlimdiv.7 . . . . . 6 (𝜑𝐸 ≠ 0)
15 eldifsn 4712 . . . . . 6 (𝐸 ∈ (ℂ ∖ {0}) ↔ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
1613, 14, 15sylanbrc 585 . . . . 5 (𝜑𝐸 ∈ (ℂ ∖ {0}))
17 eldifsn 4712 . . . . . . . 8 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
18 reccl 11299 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈ ℂ)
1917, 18sylbi 219 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) → (1 / 𝑦) ∈ ℂ)
2019adantl 484 . . . . . 6 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (1 / 𝑦) ∈ ℂ)
2120fmpttd 6873 . . . . 5 (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)):(ℂ ∖ {0})⟶ℂ)
22 eqid 2821 . . . . . . . 8 (if(1 ≤ ((abs‘𝐸) · 𝑧), 1, ((abs‘𝐸) · 𝑧)) · ((abs‘𝐸) / 2)) = (if(1 ≤ ((abs‘𝐸) · 𝑧), 1, ((abs‘𝐸) · 𝑧)) · ((abs‘𝐸) / 2))
2322reccn2 14947 . . . . . . 7 ((𝐸 ∈ (ℂ ∖ {0}) ∧ 𝑧 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧))
2416, 23sylan 582 . . . . . 6 ((𝜑𝑧 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧))
25 oveq2 7158 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (1 / 𝑦) = (1 / 𝑣))
26 eqid 2821 . . . . . . . . . . . . . 14 (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))
27 ovex 7183 . . . . . . . . . . . . . 14 (1 / 𝑣) ∈ V
2825, 26, 27fvmpt 6762 . . . . . . . . . . . . 13 (𝑣 ∈ (ℂ ∖ {0}) → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) = (1 / 𝑣))
29 oveq2 7158 . . . . . . . . . . . . . . 15 (𝑦 = 𝐸 → (1 / 𝑦) = (1 / 𝐸))
30 ovex 7183 . . . . . . . . . . . . . . 15 (1 / 𝐸) ∈ V
3129, 26, 30fvmpt 6762 . . . . . . . . . . . . . 14 (𝐸 ∈ (ℂ ∖ {0}) → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸) = (1 / 𝐸))
3216, 31syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸) = (1 / 𝐸))
3328, 32oveqan12rd 7170 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → (((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸)) = ((1 / 𝑣) − (1 / 𝐸)))
3433fveq2d 6668 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) = (abs‘((1 / 𝑣) − (1 / 𝐸))))
3534breq1d 5068 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → ((abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧 ↔ (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧))
3635imbi2d 343 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → (((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧) ↔ ((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)))
3736ralbidva 3196 . . . . . . . 8 (𝜑 → (∀𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧) ↔ ∀𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)))
3837rexbidv 3297 . . . . . . 7 (𝜑 → (∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧) ↔ ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)))
3938biimpar 480 . . . . . 6 ((𝜑 ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧))
4024, 39syldan 593 . . . . 5 ((𝜑𝑧 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧))
4111, 16, 5, 21, 40rlimcn1 14939 . . . 4 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝐴𝐶)) ⇝𝑟 ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))
42 eqidd 2822 . . . . 5 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
43 eqidd 2822 . . . . 5 (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)))
44 oveq2 7158 . . . . 5 (𝑦 = 𝐶 → (1 / 𝑦) = (1 / 𝐶))
4510, 42, 43, 44fmptco 6885 . . . 4 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (1 / 𝐶)))
4641, 45, 323brtr3d 5089 . . 3 (𝜑 → (𝑥𝐴 ↦ (1 / 𝐶)) ⇝𝑟 (1 / 𝐸))
473, 8, 2, 46rlimmul 14995 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))) ⇝𝑟 (𝐷 · (1 / 𝐸)))
483, 6, 7divrecd 11413 . . 3 ((𝜑𝑥𝐴) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
4948mpteq2dva 5153 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) = (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))))
50 rlimcl 14854 . . . 4 ((𝑥𝐴𝐵) ⇝𝑟 𝐷𝐷 ∈ ℂ)
512, 50syl 17 . . 3 (𝜑𝐷 ∈ ℂ)
5251, 13, 14divrecd 11413 . 2 (𝜑 → (𝐷 / 𝐸) = (𝐷 · (1 / 𝐸)))
5347, 49, 523brtr4d 5090 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) ⇝𝑟 (𝐷 / 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  cdif 3932  ifcif 4466  {csn 4560   class class class wbr 5058  cmpt 5138  ccom 5553  cfv 6349  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532   · cmul 10536   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  2c2 11686  +crp 12383  abscabs 14587  𝑟 crli 14836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-rlim 14840
This theorem is referenced by:  logexprlim  25795  chebbnd2  26047  chto1lb  26048  pnt2  26183  pnt  26184
  Copyright terms: Public domain W3C validator