MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimdiv Structured version   Visualization version   GIF version

Theorem rlimdiv 15619
Description: Limit of the quotient of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
rlimadd.4 ((𝜑𝑥𝐴) → 𝐶𝑉)
rlimadd.5 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimadd.6 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
rlimdiv.7 (𝜑𝐸 ≠ 0)
rlimdiv.8 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
Assertion
Ref Expression
rlimdiv (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) ⇝𝑟 (𝐷 / 𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥   𝑥,𝐸
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem rlimdiv
Dummy variables 𝑤 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimadd.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
2 rlimadd.5 . . . 4 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
31, 2rlimmptrcl 15581 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4 rlimadd.4 . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝑉)
5 rlimadd.6 . . . . 5 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
64, 5rlimmptrcl 15581 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
7 rlimdiv.8 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
86, 7reccld 11958 . . 3 ((𝜑𝑥𝐴) → (1 / 𝐶) ∈ ℂ)
9 eldifsn 4753 . . . . . . 7 (𝐶 ∈ (ℂ ∖ {0}) ↔ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
106, 7, 9sylanbrc 583 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ (ℂ ∖ {0}))
1110fmpttd 7090 . . . . 5 (𝜑 → (𝑥𝐴𝐶):𝐴⟶(ℂ ∖ {0}))
12 rlimcl 15476 . . . . . . 7 ((𝑥𝐴𝐶) ⇝𝑟 𝐸𝐸 ∈ ℂ)
135, 12syl 17 . . . . . 6 (𝜑𝐸 ∈ ℂ)
14 rlimdiv.7 . . . . . 6 (𝜑𝐸 ≠ 0)
15 eldifsn 4753 . . . . . 6 (𝐸 ∈ (ℂ ∖ {0}) ↔ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
1613, 14, 15sylanbrc 583 . . . . 5 (𝜑𝐸 ∈ (ℂ ∖ {0}))
17 eldifsn 4753 . . . . . . . 8 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
18 reccl 11851 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈ ℂ)
1917, 18sylbi 217 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) → (1 / 𝑦) ∈ ℂ)
2019adantl 481 . . . . . 6 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (1 / 𝑦) ∈ ℂ)
2120fmpttd 7090 . . . . 5 (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)):(ℂ ∖ {0})⟶ℂ)
22 eqid 2730 . . . . . . . 8 (if(1 ≤ ((abs‘𝐸) · 𝑧), 1, ((abs‘𝐸) · 𝑧)) · ((abs‘𝐸) / 2)) = (if(1 ≤ ((abs‘𝐸) · 𝑧), 1, ((abs‘𝐸) · 𝑧)) · ((abs‘𝐸) / 2))
2322reccn2 15570 . . . . . . 7 ((𝐸 ∈ (ℂ ∖ {0}) ∧ 𝑧 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧))
2416, 23sylan 580 . . . . . 6 ((𝜑𝑧 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧))
25 oveq2 7398 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (1 / 𝑦) = (1 / 𝑣))
26 eqid 2730 . . . . . . . . . . . . . 14 (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))
27 ovex 7423 . . . . . . . . . . . . . 14 (1 / 𝑣) ∈ V
2825, 26, 27fvmpt 6971 . . . . . . . . . . . . 13 (𝑣 ∈ (ℂ ∖ {0}) → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) = (1 / 𝑣))
29 oveq2 7398 . . . . . . . . . . . . . . 15 (𝑦 = 𝐸 → (1 / 𝑦) = (1 / 𝐸))
30 ovex 7423 . . . . . . . . . . . . . . 15 (1 / 𝐸) ∈ V
3129, 26, 30fvmpt 6971 . . . . . . . . . . . . . 14 (𝐸 ∈ (ℂ ∖ {0}) → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸) = (1 / 𝐸))
3216, 31syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸) = (1 / 𝐸))
3328, 32oveqan12rd 7410 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → (((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸)) = ((1 / 𝑣) − (1 / 𝐸)))
3433fveq2d 6865 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) = (abs‘((1 / 𝑣) − (1 / 𝐸))))
3534breq1d 5120 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → ((abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧 ↔ (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧))
3635imbi2d 340 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → (((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧) ↔ ((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)))
3736ralbidva 3155 . . . . . . . 8 (𝜑 → (∀𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧) ↔ ∀𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)))
3837rexbidv 3158 . . . . . . 7 (𝜑 → (∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧) ↔ ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)))
3938biimpar 477 . . . . . 6 ((𝜑 ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧))
4024, 39syldan 591 . . . . 5 ((𝜑𝑧 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧))
4111, 16, 5, 21, 40rlimcn1 15561 . . . 4 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝐴𝐶)) ⇝𝑟 ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))
42 eqidd 2731 . . . . 5 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
43 eqidd 2731 . . . . 5 (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)))
44 oveq2 7398 . . . . 5 (𝑦 = 𝐶 → (1 / 𝑦) = (1 / 𝐶))
4510, 42, 43, 44fmptco 7104 . . . 4 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (1 / 𝐶)))
4641, 45, 323brtr3d 5141 . . 3 (𝜑 → (𝑥𝐴 ↦ (1 / 𝐶)) ⇝𝑟 (1 / 𝐸))
473, 8, 2, 46rlimmul 15618 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))) ⇝𝑟 (𝐷 · (1 / 𝐸)))
483, 6, 7divrecd 11968 . . 3 ((𝜑𝑥𝐴) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
4948mpteq2dva 5203 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) = (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))))
50 rlimcl 15476 . . . 4 ((𝑥𝐴𝐵) ⇝𝑟 𝐷𝐷 ∈ ℂ)
512, 50syl 17 . . 3 (𝜑𝐷 ∈ ℂ)
5251, 13, 14divrecd 11968 . 2 (𝜑 → (𝐷 / 𝐸) = (𝐷 · (1 / 𝐸)))
5347, 49, 523brtr4d 5142 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) ⇝𝑟 (𝐷 / 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191  ccom 5645  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  2c2 12248  +crp 12958  abscabs 15207  𝑟 crli 15458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-rlim 15462
This theorem is referenced by:  logexprlim  27143  chebbnd2  27395  chto1lb  27396  pnt2  27531  pnt  27532
  Copyright terms: Public domain W3C validator