MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimdiv Structured version   Visualization version   GIF version

Theorem rlimdiv 15589
Description: Limit of the quotient of two converging functions. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
rlimadd.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
rlimadd.4 ((𝜑𝑥𝐴) → 𝐶𝑉)
rlimadd.5 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimadd.6 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
rlimdiv.7 (𝜑𝐸 ≠ 0)
rlimdiv.8 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
Assertion
Ref Expression
rlimdiv (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) ⇝𝑟 (𝐷 / 𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥   𝑥,𝐸
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem rlimdiv
Dummy variables 𝑤 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimadd.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
2 rlimadd.5 . . . 4 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
31, 2rlimmptrcl 15549 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
4 rlimadd.4 . . . . 5 ((𝜑𝑥𝐴) → 𝐶𝑉)
5 rlimadd.6 . . . . 5 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
64, 5rlimmptrcl 15549 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
7 rlimdiv.8 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ≠ 0)
86, 7reccld 11980 . . 3 ((𝜑𝑥𝐴) → (1 / 𝐶) ∈ ℂ)
9 eldifsn 4790 . . . . . . 7 (𝐶 ∈ (ℂ ∖ {0}) ↔ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
106, 7, 9sylanbrc 584 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ (ℂ ∖ {0}))
1110fmpttd 7112 . . . . 5 (𝜑 → (𝑥𝐴𝐶):𝐴⟶(ℂ ∖ {0}))
12 rlimcl 15444 . . . . . . 7 ((𝑥𝐴𝐶) ⇝𝑟 𝐸𝐸 ∈ ℂ)
135, 12syl 17 . . . . . 6 (𝜑𝐸 ∈ ℂ)
14 rlimdiv.7 . . . . . 6 (𝜑𝐸 ≠ 0)
15 eldifsn 4790 . . . . . 6 (𝐸 ∈ (ℂ ∖ {0}) ↔ (𝐸 ∈ ℂ ∧ 𝐸 ≠ 0))
1613, 14, 15sylanbrc 584 . . . . 5 (𝜑𝐸 ∈ (ℂ ∖ {0}))
17 eldifsn 4790 . . . . . . . 8 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
18 reccl 11876 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈ ℂ)
1917, 18sylbi 216 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) → (1 / 𝑦) ∈ ℂ)
2019adantl 483 . . . . . 6 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (1 / 𝑦) ∈ ℂ)
2120fmpttd 7112 . . . . 5 (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)):(ℂ ∖ {0})⟶ℂ)
22 eqid 2733 . . . . . . . 8 (if(1 ≤ ((abs‘𝐸) · 𝑧), 1, ((abs‘𝐸) · 𝑧)) · ((abs‘𝐸) / 2)) = (if(1 ≤ ((abs‘𝐸) · 𝑧), 1, ((abs‘𝐸) · 𝑧)) · ((abs‘𝐸) / 2))
2322reccn2 15538 . . . . . . 7 ((𝐸 ∈ (ℂ ∖ {0}) ∧ 𝑧 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧))
2416, 23sylan 581 . . . . . 6 ((𝜑𝑧 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧))
25 oveq2 7414 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → (1 / 𝑦) = (1 / 𝑣))
26 eqid 2733 . . . . . . . . . . . . . 14 (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))
27 ovex 7439 . . . . . . . . . . . . . 14 (1 / 𝑣) ∈ V
2825, 26, 27fvmpt 6996 . . . . . . . . . . . . 13 (𝑣 ∈ (ℂ ∖ {0}) → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) = (1 / 𝑣))
29 oveq2 7414 . . . . . . . . . . . . . . 15 (𝑦 = 𝐸 → (1 / 𝑦) = (1 / 𝐸))
30 ovex 7439 . . . . . . . . . . . . . . 15 (1 / 𝐸) ∈ V
3129, 26, 30fvmpt 6996 . . . . . . . . . . . . . 14 (𝐸 ∈ (ℂ ∖ {0}) → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸) = (1 / 𝐸))
3216, 31syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸) = (1 / 𝐸))
3328, 32oveqan12rd 7426 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → (((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸)) = ((1 / 𝑣) − (1 / 𝐸)))
3433fveq2d 6893 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) = (abs‘((1 / 𝑣) − (1 / 𝐸))))
3534breq1d 5158 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → ((abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧 ↔ (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧))
3635imbi2d 341 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℂ ∖ {0})) → (((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧) ↔ ((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)))
3736ralbidva 3176 . . . . . . . 8 (𝜑 → (∀𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧) ↔ ∀𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)))
3837rexbidv 3179 . . . . . . 7 (𝜑 → (∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧) ↔ ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)))
3938biimpar 479 . . . . . 6 ((𝜑 ∧ ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘((1 / 𝑣) − (1 / 𝐸))) < 𝑧)) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧))
4024, 39syldan 592 . . . . 5 ((𝜑𝑧 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣 ∈ (ℂ ∖ {0})((abs‘(𝑣𝐸)) < 𝑤 → (abs‘(((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝑣) − ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))) < 𝑧))
4111, 16, 5, 21, 40rlimcn1 15529 . . . 4 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝐴𝐶)) ⇝𝑟 ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))‘𝐸))
42 eqidd 2734 . . . . 5 (𝜑 → (𝑥𝐴𝐶) = (𝑥𝐴𝐶))
43 eqidd 2734 . . . . 5 (𝜑 → (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) = (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)))
44 oveq2 7414 . . . . 5 (𝑦 = 𝐶 → (1 / 𝑦) = (1 / 𝐶))
4510, 42, 43, 44fmptco 7124 . . . 4 (𝜑 → ((𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦)) ∘ (𝑥𝐴𝐶)) = (𝑥𝐴 ↦ (1 / 𝐶)))
4641, 45, 323brtr3d 5179 . . 3 (𝜑 → (𝑥𝐴 ↦ (1 / 𝐶)) ⇝𝑟 (1 / 𝐸))
473, 8, 2, 46rlimmul 15587 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))) ⇝𝑟 (𝐷 · (1 / 𝐸)))
483, 6, 7divrecd 11990 . . 3 ((𝜑𝑥𝐴) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
4948mpteq2dva 5248 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) = (𝑥𝐴 ↦ (𝐵 · (1 / 𝐶))))
50 rlimcl 15444 . . . 4 ((𝑥𝐴𝐵) ⇝𝑟 𝐷𝐷 ∈ ℂ)
512, 50syl 17 . . 3 (𝜑𝐷 ∈ ℂ)
5251, 13, 14divrecd 11990 . 2 (𝜑 → (𝐷 / 𝐸) = (𝐷 · (1 / 𝐸)))
5347, 49, 523brtr4d 5180 1 (𝜑 → (𝑥𝐴 ↦ (𝐵 / 𝐶)) ⇝𝑟 (𝐷 / 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  cdif 3945  ifcif 4528  {csn 4628   class class class wbr 5148  cmpt 5231  ccom 5680  cfv 6541  (class class class)co 7406  cc 11105  0cc0 11107  1c1 11108   · cmul 11112   < clt 11245  cle 11246  cmin 11441   / cdiv 11868  2c2 12264  +crp 12971  abscabs 15178  𝑟 crli 15426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-sup 9434  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-rlim 15430
This theorem is referenced by:  logexprlim  26718  chebbnd2  26970  chto1lb  26971  pnt2  27106  pnt  27107
  Copyright terms: Public domain W3C validator