Step | Hyp | Ref
| Expression |
1 | | ssidd 3915 |
. 2
⊢ (𝜑 → 𝑅 ⊆ 𝑅) |
2 | | eqid 2758 |
. . . . . . 7
⊢
(Base‘𝑎) =
(Base‘𝑎) |
3 | | eqid 2758 |
. . . . . . 7
⊢
(Base‘𝑏) =
(Base‘𝑏) |
4 | 2, 3 | rhmf 19549 |
. . . . . 6
⊢ (ℎ ∈ (𝑎 RingHom 𝑏) → ℎ:(Base‘𝑎)⟶(Base‘𝑏)) |
5 | | simpr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) ∧ ℎ:(Base‘𝑎)⟶(Base‘𝑏)) → ℎ:(Base‘𝑎)⟶(Base‘𝑏)) |
6 | | fvex 6671 |
. . . . . . . . . 10
⊢
(Base‘𝑏)
∈ V |
7 | | fvex 6671 |
. . . . . . . . . 10
⊢
(Base‘𝑎)
∈ V |
8 | 6, 7 | pm3.2i 474 |
. . . . . . . . 9
⊢
((Base‘𝑏)
∈ V ∧ (Base‘𝑎) ∈ V) |
9 | | elmapg 8429 |
. . . . . . . . 9
⊢
(((Base‘𝑏)
∈ V ∧ (Base‘𝑎) ∈ V) → (ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ ℎ:(Base‘𝑎)⟶(Base‘𝑏))) |
10 | 8, 9 | mp1i 13 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) ∧ ℎ:(Base‘𝑎)⟶(Base‘𝑏)) → (ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎)) ↔ ℎ:(Base‘𝑎)⟶(Base‘𝑏))) |
11 | 5, 10 | mpbird 260 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) ∧ ℎ:(Base‘𝑎)⟶(Base‘𝑏)) → ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎))) |
12 | 11 | ex 416 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (ℎ:(Base‘𝑎)⟶(Base‘𝑏) → ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))) |
13 | 4, 12 | syl5 34 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (ℎ ∈ (𝑎 RingHom 𝑏) → ℎ ∈ ((Base‘𝑏) ↑m (Base‘𝑎)))) |
14 | 13 | ssrdv 3898 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (𝑎 RingHom 𝑏) ⊆ ((Base‘𝑏) ↑m (Base‘𝑎))) |
15 | | ovres 7310 |
. . . . 5
⊢ ((𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RingHom 𝑏)) |
16 | 15 | adantl 485 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RingHom 𝑏)) |
17 | | eqidd 2759 |
. . . . . 6
⊢ ((𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅) → (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |
18 | | fveq2 6658 |
. . . . . . . 8
⊢ (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏)) |
19 | | fveq2 6658 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎)) |
20 | 18, 19 | oveqan12rd 7170 |
. . . . . . 7
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m
(Base‘𝑎))) |
21 | 20 | adantl 485 |
. . . . . 6
⊢ (((𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅) ∧ (𝑥 = 𝑎 ∧ 𝑦 = 𝑏)) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑏) ↑m
(Base‘𝑎))) |
22 | | simpl 486 |
. . . . . 6
⊢ ((𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅) → 𝑎 ∈ 𝑅) |
23 | | simpr 488 |
. . . . . 6
⊢ ((𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅) → 𝑏 ∈ 𝑅) |
24 | | ovexd 7185 |
. . . . . 6
⊢ ((𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅) → ((Base‘𝑏) ↑m (Base‘𝑎)) ∈ V) |
25 | 17, 21, 22, 23, 24 | ovmpod 7297 |
. . . . 5
⊢ ((𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅) → (𝑎(𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎))) |
26 | 25 | adantl 485 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (𝑎(𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑m (Base‘𝑎))) |
27 | 14, 16, 26 | 3sstr4d 3939 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑅 ∧ 𝑏 ∈ 𝑅)) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏)) |
28 | 27 | ralrimivva 3120 |
. 2
⊢ (𝜑 → ∀𝑎 ∈ 𝑅 ∀𝑏 ∈ 𝑅 (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏)) |
29 | | rhmfn 44909 |
. . . . 5
⊢ RingHom
Fn (Ring × Ring) |
30 | 29 | a1i 11 |
. . . 4
⊢ (𝜑 → RingHom Fn (Ring ×
Ring)) |
31 | | rhmsscmap.r |
. . . . . 6
⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
32 | | inss1 4133 |
. . . . . 6
⊢ (Ring
∩ 𝑈) ⊆
Ring |
33 | 31, 32 | eqsstrdi 3946 |
. . . . 5
⊢ (𝜑 → 𝑅 ⊆ Ring) |
34 | | xpss12 5539 |
. . . . 5
⊢ ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring ×
Ring)) |
35 | 33, 33, 34 | syl2anc 587 |
. . . 4
⊢ (𝜑 → (𝑅 × 𝑅) ⊆ (Ring ×
Ring)) |
36 | | fnssres 6453 |
. . . 4
⊢ ((
RingHom Fn (Ring × Ring) ∧ (𝑅 × 𝑅) ⊆ (Ring × Ring)) → (
RingHom ↾ (𝑅 ×
𝑅)) Fn (𝑅 × 𝑅)) |
37 | 30, 35, 36 | syl2anc 587 |
. . 3
⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅)) |
38 | | eqid 2758 |
. . . . 5
⊢ (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) |
39 | | ovex 7183 |
. . . . 5
⊢
((Base‘𝑦)
↑m (Base‘𝑥)) ∈ V |
40 | 38, 39 | fnmpoi 7772 |
. . . 4
⊢ (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑅 × 𝑅) |
41 | 40 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) Fn (𝑅 × 𝑅)) |
42 | | incom 4106 |
. . . . 5
⊢ (Ring
∩ 𝑈) = (𝑈 ∩ Ring) |
43 | | rhmsscmap.u |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
44 | | inex1g 5189 |
. . . . . 6
⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) ∈ V) |
45 | 43, 44 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑈 ∩ Ring) ∈ V) |
46 | 42, 45 | eqeltrid 2856 |
. . . 4
⊢ (𝜑 → (Ring ∩ 𝑈) ∈ V) |
47 | 31, 46 | eqeltrd 2852 |
. . 3
⊢ (𝜑 → 𝑅 ∈ V) |
48 | 37, 41, 47 | isssc 17149 |
. 2
⊢ (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) ↔ (𝑅 ⊆ 𝑅 ∧ ∀𝑎 ∈ 𝑅 ∀𝑏 ∈ 𝑅 (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))𝑏)))) |
49 | 1, 28, 48 | mpbir2and 712 |
1
⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) |