| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprmul | Structured version Visualization version GIF version | ||
| Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
| opprval.2 | ⊢ · = (.r‘𝑅) |
| opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
| opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
| Ref | Expression |
|---|---|
| opprmul | ⊢ (𝑋 ∙ 𝑌) = (𝑌 · 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprval.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | opprval.2 | . . . 4 ⊢ · = (.r‘𝑅) | |
| 3 | opprval.3 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 4 | opprmulfval.4 | . . . 4 ⊢ ∙ = (.r‘𝑂) | |
| 5 | 1, 2, 3, 4 | opprmulfval 20252 | . . 3 ⊢ ∙ = tpos · |
| 6 | 5 | oveqi 7354 | . 2 ⊢ (𝑋 ∙ 𝑌) = (𝑋tpos · 𝑌) |
| 7 | ovtpos 8166 | . 2 ⊢ (𝑋tpos · 𝑌) = (𝑌 · 𝑋) | |
| 8 | 6, 7 | eqtri 2754 | 1 ⊢ (𝑋 ∙ 𝑌) = (𝑌 · 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ‘cfv 6476 (class class class)co 7341 tpos ctpos 8150 Basecbs 17115 .rcmulr 17157 opprcoppr 20249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-1cn 11059 ax-addcl 11061 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-2 12183 df-3 12184 df-sets 17070 df-slot 17088 df-ndx 17100 df-mulr 17170 df-oppr 20250 |
| This theorem is referenced by: crngoppr 20254 opprrng 20258 opprrngb 20259 opprring 20260 opprringb 20261 oppr1 20263 mulgass3 20266 opprunit 20290 unitmulcl 20293 unitgrp 20296 unitpropd 20330 opprirred 20335 irredlmul 20341 rhmopp 20419 opprsubrng 20469 subrguss 20497 subrgunit 20500 opprsubrg 20503 opprdomnb 20627 isdomn4r 20629 isdrng2 20653 isdrngrd 20676 isdrngrdOLD 20678 srngmul 20762 issrngd 20765 rngridlmcl 21149 isridlrng 21151 isridl 21184 2idlcpblrng 21203 psropprmul 22145 invrvald 22586 isunit2 33199 isdrng4 33253 opprlidlabs 33442 opprqusmulr 33448 qsdrngi 33452 ldualsmul 39174 lcdsmul 41641 |
| Copyright terms: Public domain | W3C validator |