Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opprmul | Structured version Visualization version GIF version |
Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
opprval.2 | ⊢ · = (.r‘𝑅) |
opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
Ref | Expression |
---|---|
opprmul | ⊢ (𝑋 ∙ 𝑌) = (𝑌 · 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprval.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | opprval.2 | . . . 4 ⊢ · = (.r‘𝑅) | |
3 | opprval.3 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
4 | opprmulfval.4 | . . . 4 ⊢ ∙ = (.r‘𝑂) | |
5 | 1, 2, 3, 4 | opprmulfval 19909 | . . 3 ⊢ ∙ = tpos · |
6 | 5 | oveqi 7320 | . 2 ⊢ (𝑋 ∙ 𝑌) = (𝑋tpos · 𝑌) |
7 | ovtpos 8088 | . 2 ⊢ (𝑋tpos · 𝑌) = (𝑌 · 𝑋) | |
8 | 6, 7 | eqtri 2764 | 1 ⊢ (𝑋 ∙ 𝑌) = (𝑌 · 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ‘cfv 6458 (class class class)co 7307 tpos ctpos 8072 Basecbs 16957 .rcmulr 17008 opprcoppr 19906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-1cn 10975 ax-addcl 10977 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-tpos 8073 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-nn 12020 df-2 12082 df-3 12083 df-sets 16910 df-slot 16928 df-ndx 16940 df-mulr 17021 df-oppr 19907 |
This theorem is referenced by: crngoppr 19911 opprring 19918 opprringb 19919 oppr1 19921 mulgass3 19924 opprunit 19948 unitmulcl 19951 unitgrp 19954 unitpropd 19984 opprirred 19989 irredlmul 19995 isdrng2 20046 isdrngrd 20062 subrguss 20084 subrgunit 20087 opprsubrg 20090 srngmul 20163 issrngd 20166 2idlcpbl 20550 opprdomn 20617 psropprmul 21454 invrvald 21870 rhmopp 31563 ldualsmul 37191 lcdsmul 39658 |
Copyright terms: Public domain | W3C validator |