Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opprmul | Structured version Visualization version GIF version |
Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
opprval.2 | ⊢ · = (.r‘𝑅) |
opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
Ref | Expression |
---|---|
opprmul | ⊢ (𝑋 ∙ 𝑌) = (𝑌 · 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprval.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | opprval.2 | . . . 4 ⊢ · = (.r‘𝑅) | |
3 | opprval.3 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
4 | opprmulfval.4 | . . . 4 ⊢ ∙ = (.r‘𝑂) | |
5 | 1, 2, 3, 4 | opprmulfval 19860 | . . 3 ⊢ ∙ = tpos · |
6 | 5 | oveqi 7282 | . 2 ⊢ (𝑋 ∙ 𝑌) = (𝑋tpos · 𝑌) |
7 | ovtpos 8046 | . 2 ⊢ (𝑋tpos · 𝑌) = (𝑌 · 𝑋) | |
8 | 6, 7 | eqtri 2768 | 1 ⊢ (𝑋 ∙ 𝑌) = (𝑌 · 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ‘cfv 6431 (class class class)co 7269 tpos ctpos 8030 Basecbs 16908 .rcmulr 16959 opprcoppr 19857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-1cn 10928 ax-addcl 10930 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-2nd 7823 df-tpos 8031 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-nn 11972 df-2 12034 df-3 12035 df-sets 16861 df-slot 16879 df-ndx 16891 df-mulr 16972 df-oppr 19858 |
This theorem is referenced by: crngoppr 19862 opprring 19869 opprringb 19870 oppr1 19872 mulgass3 19875 opprunit 19899 unitmulcl 19902 unitgrp 19905 unitpropd 19935 opprirred 19940 irredlmul 19946 isdrng2 19997 isdrngrd 20013 subrguss 20035 subrgunit 20038 opprsubrg 20041 srngmul 20114 issrngd 20117 2idlcpbl 20501 opprdomn 20568 psropprmul 21405 invrvald 21821 rhmopp 31512 ldualsmul 37143 lcdsmul 39610 |
Copyright terms: Public domain | W3C validator |