| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprmul | Structured version Visualization version GIF version | ||
| Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
| opprval.2 | ⊢ · = (.r‘𝑅) |
| opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
| opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
| Ref | Expression |
|---|---|
| opprmul | ⊢ (𝑋 ∙ 𝑌) = (𝑌 · 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprval.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | opprval.2 | . . . 4 ⊢ · = (.r‘𝑅) | |
| 3 | opprval.3 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 4 | opprmulfval.4 | . . . 4 ⊢ ∙ = (.r‘𝑂) | |
| 5 | 1, 2, 3, 4 | opprmulfval 20297 | . . 3 ⊢ ∙ = tpos · |
| 6 | 5 | oveqi 7416 | . 2 ⊢ (𝑋 ∙ 𝑌) = (𝑋tpos · 𝑌) |
| 7 | ovtpos 8238 | . 2 ⊢ (𝑋tpos · 𝑌) = (𝑌 · 𝑋) | |
| 8 | 6, 7 | eqtri 2758 | 1 ⊢ (𝑋 ∙ 𝑌) = (𝑌 · 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ‘cfv 6530 (class class class)co 7403 tpos ctpos 8222 Basecbs 17226 .rcmulr 17270 opprcoppr 20294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-1cn 11185 ax-addcl 11187 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12239 df-2 12301 df-3 12302 df-sets 17181 df-slot 17199 df-ndx 17211 df-mulr 17283 df-oppr 20295 |
| This theorem is referenced by: crngoppr 20299 opprrng 20303 opprrngb 20304 opprring 20305 opprringb 20306 oppr1 20308 mulgass3 20311 opprunit 20335 unitmulcl 20338 unitgrp 20341 unitpropd 20375 opprirred 20380 irredlmul 20386 rhmopp 20467 opprsubrng 20517 subrguss 20545 subrgunit 20548 opprsubrg 20551 opprdomnb 20675 isdomn4r 20677 isdrng2 20701 isdrngrd 20724 isdrngrdOLD 20726 srngmul 20810 issrngd 20813 rngridlmcl 21176 isridlrng 21178 isridl 21211 2idlcpblrng 21230 psropprmul 22171 invrvald 22612 isunit2 33181 isdrng4 33235 opprlidlabs 33446 opprqusmulr 33452 qsdrngi 33456 ldualsmul 39099 lcdsmul 41567 |
| Copyright terms: Public domain | W3C validator |