![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprmul | Structured version Visualization version GIF version |
Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
opprval.2 | ⊢ · = (.r‘𝑅) |
opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
Ref | Expression |
---|---|
opprmul | ⊢ (𝑋 ∙ 𝑌) = (𝑌 · 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprval.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | opprval.2 | . . . 4 ⊢ · = (.r‘𝑅) | |
3 | opprval.3 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
4 | opprmulfval.4 | . . . 4 ⊢ ∙ = (.r‘𝑂) | |
5 | 1, 2, 3, 4 | opprmulfval 20264 | . . 3 ⊢ ∙ = tpos · |
6 | 5 | oveqi 7427 | . 2 ⊢ (𝑋 ∙ 𝑌) = (𝑋tpos · 𝑌) |
7 | ovtpos 8240 | . 2 ⊢ (𝑋tpos · 𝑌) = (𝑌 · 𝑋) | |
8 | 6, 7 | eqtri 2755 | 1 ⊢ (𝑋 ∙ 𝑌) = (𝑌 · 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ‘cfv 6542 (class class class)co 7414 tpos ctpos 8224 Basecbs 17171 .rcmulr 17225 opprcoppr 20261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-1cn 11188 ax-addcl 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12235 df-2 12297 df-3 12298 df-sets 17124 df-slot 17142 df-ndx 17154 df-mulr 17238 df-oppr 20262 |
This theorem is referenced by: crngoppr 20266 opprrng 20273 opprrngb 20274 opprring 20275 opprringb 20276 oppr1 20278 mulgass3 20281 opprunit 20305 unitmulcl 20308 unitgrp 20311 unitpropd 20345 opprirred 20350 irredlmul 20356 rhmopp 20437 opprsubrng 20485 subrguss 20515 subrgunit 20518 opprsubrg 20521 isdrng2 20627 isdrngrd 20647 isdrngrdOLD 20649 srngmul 20727 issrngd 20730 rngridlmcl 21102 isridlrng 21104 isridl 21135 2idlcpblrng 21154 opprdomn 21239 psropprmul 22143 invrvald 22565 isdrng4 32932 opprlidlabs 33132 opprqusmulr 33138 qsdrngi 33142 ldualsmul 38544 lcdsmul 41012 |
Copyright terms: Public domain | W3C validator |