MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprmul Structured version   Visualization version   GIF version

Theorem opprmul 20225
Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypotheses
Ref Expression
opprval.1 𝐵 = (Base‘𝑅)
opprval.2 · = (.r𝑅)
opprval.3 𝑂 = (oppr𝑅)
opprmulfval.4 = (.r𝑂)
Assertion
Ref Expression
opprmul (𝑋 𝑌) = (𝑌 · 𝑋)

Proof of Theorem opprmul
StepHypRef Expression
1 opprval.1 . . . 4 𝐵 = (Base‘𝑅)
2 opprval.2 . . . 4 · = (.r𝑅)
3 opprval.3 . . . 4 𝑂 = (oppr𝑅)
4 opprmulfval.4 . . . 4 = (.r𝑂)
51, 2, 3, 4opprmulfval 20224 . . 3 = tpos ·
65oveqi 7362 . 2 (𝑋 𝑌) = (𝑋tpos · 𝑌)
7 ovtpos 8174 . 2 (𝑋tpos · 𝑌) = (𝑌 · 𝑋)
86, 7eqtri 2752 1 (𝑋 𝑌) = (𝑌 · 𝑋)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cfv 6482  (class class class)co 7349  tpos ctpos 8158  Basecbs 17120  .rcmulr 17162  opprcoppr 20221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-1cn 11067  ax-addcl 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-nn 12129  df-2 12191  df-3 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-mulr 17175  df-oppr 20222
This theorem is referenced by:  crngoppr  20226  opprrng  20230  opprrngb  20231  opprring  20232  opprringb  20233  oppr1  20235  mulgass3  20238  opprunit  20262  unitmulcl  20265  unitgrp  20268  unitpropd  20302  opprirred  20307  irredlmul  20313  rhmopp  20394  opprsubrng  20444  subrguss  20472  subrgunit  20475  opprsubrg  20478  opprdomnb  20602  isdomn4r  20604  isdrng2  20628  isdrngrd  20651  isdrngrdOLD  20653  srngmul  20737  issrngd  20740  rngridlmcl  21124  isridlrng  21126  isridl  21159  2idlcpblrng  21178  psropprmul  22120  invrvald  22561  isunit2  33180  isdrng4  33234  opprlidlabs  33422  opprqusmulr  33428  qsdrngi  33432  ldualsmul  39114  lcdsmul  41581
  Copyright terms: Public domain W3C validator