MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprmul Structured version   Visualization version   GIF version

Theorem opprmul 20298
Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypotheses
Ref Expression
opprval.1 𝐵 = (Base‘𝑅)
opprval.2 · = (.r𝑅)
opprval.3 𝑂 = (oppr𝑅)
opprmulfval.4 = (.r𝑂)
Assertion
Ref Expression
opprmul (𝑋 𝑌) = (𝑌 · 𝑋)

Proof of Theorem opprmul
StepHypRef Expression
1 opprval.1 . . . 4 𝐵 = (Base‘𝑅)
2 opprval.2 . . . 4 · = (.r𝑅)
3 opprval.3 . . . 4 𝑂 = (oppr𝑅)
4 opprmulfval.4 . . . 4 = (.r𝑂)
51, 2, 3, 4opprmulfval 20297 . . 3 = tpos ·
65oveqi 7416 . 2 (𝑋 𝑌) = (𝑋tpos · 𝑌)
7 ovtpos 8238 . 2 (𝑋tpos · 𝑌) = (𝑌 · 𝑋)
86, 7eqtri 2758 1 (𝑋 𝑌) = (𝑌 · 𝑋)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cfv 6530  (class class class)co 7403  tpos ctpos 8222  Basecbs 17226  .rcmulr 17270  opprcoppr 20294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-1cn 11185  ax-addcl 11187
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-nn 12239  df-2 12301  df-3 12302  df-sets 17181  df-slot 17199  df-ndx 17211  df-mulr 17283  df-oppr 20295
This theorem is referenced by:  crngoppr  20299  opprrng  20303  opprrngb  20304  opprring  20305  opprringb  20306  oppr1  20308  mulgass3  20311  opprunit  20335  unitmulcl  20338  unitgrp  20341  unitpropd  20375  opprirred  20380  irredlmul  20386  rhmopp  20467  opprsubrng  20517  subrguss  20545  subrgunit  20548  opprsubrg  20551  opprdomnb  20675  isdomn4r  20677  isdrng2  20701  isdrngrd  20724  isdrngrdOLD  20726  srngmul  20810  issrngd  20813  rngridlmcl  21176  isridlrng  21178  isridl  21211  2idlcpblrng  21230  psropprmul  22171  invrvald  22612  isunit2  33181  isdrng4  33235  opprlidlabs  33446  opprqusmulr  33452  qsdrngi  33456  ldualsmul  39099  lcdsmul  41567
  Copyright terms: Public domain W3C validator