MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprmul Structured version   Visualization version   GIF version

Theorem opprmul 20265
Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypotheses
Ref Expression
opprval.1 𝐵 = (Base‘𝑅)
opprval.2 · = (.r𝑅)
opprval.3 𝑂 = (oppr𝑅)
opprmulfval.4 = (.r𝑂)
Assertion
Ref Expression
opprmul (𝑋 𝑌) = (𝑌 · 𝑋)

Proof of Theorem opprmul
StepHypRef Expression
1 opprval.1 . . . 4 𝐵 = (Base‘𝑅)
2 opprval.2 . . . 4 · = (.r𝑅)
3 opprval.3 . . . 4 𝑂 = (oppr𝑅)
4 opprmulfval.4 . . . 4 = (.r𝑂)
51, 2, 3, 4opprmulfval 20264 . . 3 = tpos ·
65oveqi 7427 . 2 (𝑋 𝑌) = (𝑋tpos · 𝑌)
7 ovtpos 8240 . 2 (𝑋tpos · 𝑌) = (𝑌 · 𝑋)
86, 7eqtri 2755 1 (𝑋 𝑌) = (𝑌 · 𝑋)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  cfv 6542  (class class class)co 7414  tpos ctpos 8224  Basecbs 17171  .rcmulr 17225  opprcoppr 20261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-1cn 11188  ax-addcl 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-nn 12235  df-2 12297  df-3 12298  df-sets 17124  df-slot 17142  df-ndx 17154  df-mulr 17238  df-oppr 20262
This theorem is referenced by:  crngoppr  20266  opprrng  20273  opprrngb  20274  opprring  20275  opprringb  20276  oppr1  20278  mulgass3  20281  opprunit  20305  unitmulcl  20308  unitgrp  20311  unitpropd  20345  opprirred  20350  irredlmul  20356  rhmopp  20437  opprsubrng  20485  subrguss  20515  subrgunit  20518  opprsubrg  20521  isdrng2  20627  isdrngrd  20647  isdrngrdOLD  20649  srngmul  20727  issrngd  20730  rngridlmcl  21102  isridlrng  21104  isridl  21135  2idlcpblrng  21154  opprdomn  21239  psropprmul  22143  invrvald  22565  isdrng4  32932  opprlidlabs  33132  opprqusmulr  33138  qsdrngi  33142  ldualsmul  38544  lcdsmul  41012
  Copyright terms: Public domain W3C validator