MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprmul Structured version   Visualization version   GIF version

Theorem opprmul 20228
Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypotheses
Ref Expression
opprval.1 ๐ต = (Baseโ€˜๐‘…)
opprval.2 ยท = (.rโ€˜๐‘…)
opprval.3 ๐‘‚ = (opprโ€˜๐‘…)
opprmulfval.4 โˆ™ = (.rโ€˜๐‘‚)
Assertion
Ref Expression
opprmul (๐‘‹ โˆ™ ๐‘Œ) = (๐‘Œ ยท ๐‘‹)

Proof of Theorem opprmul
StepHypRef Expression
1 opprval.1 . . . 4 ๐ต = (Baseโ€˜๐‘…)
2 opprval.2 . . . 4 ยท = (.rโ€˜๐‘…)
3 opprval.3 . . . 4 ๐‘‚ = (opprโ€˜๐‘…)
4 opprmulfval.4 . . . 4 โˆ™ = (.rโ€˜๐‘‚)
51, 2, 3, 4opprmulfval 20227 . . 3 โˆ™ = tpos ยท
65oveqi 7424 . 2 (๐‘‹ โˆ™ ๐‘Œ) = (๐‘‹tpos ยท ๐‘Œ)
7 ovtpos 8228 . 2 (๐‘‹tpos ยท ๐‘Œ) = (๐‘Œ ยท ๐‘‹)
86, 7eqtri 2758 1 (๐‘‹ โˆ™ ๐‘Œ) = (๐‘Œ ยท ๐‘‹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  โ€˜cfv 6542  (class class class)co 7411  tpos ctpos 8212  Basecbs 17148  .rcmulr 17202  opprcoppr 20224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-1cn 11170  ax-addcl 11172
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-nn 12217  df-2 12279  df-3 12280  df-sets 17101  df-slot 17119  df-ndx 17131  df-mulr 17215  df-oppr 20225
This theorem is referenced by:  crngoppr  20229  opprrng  20236  opprrngb  20237  opprring  20238  opprringb  20239  oppr1  20241  mulgass3  20244  opprunit  20268  unitmulcl  20271  unitgrp  20274  unitpropd  20308  opprirred  20313  irredlmul  20319  rhmopp  20400  opprsubrng  20447  subrguss  20477  subrgunit  20480  opprsubrg  20483  isdrng2  20514  isdrngrd  20534  isdrngrdOLD  20536  srngmul  20609  issrngd  20612  rngridlmcl  20983  isridl  21008  2idlcpblrng  21020  isridlrng  21031  opprdomn  21119  psropprmul  21980  invrvald  22398  isdrng4  32665  opprlidlabs  32873  opprqusmulr  32879  qsdrngi  32883  ldualsmul  38308  lcdsmul  40776
  Copyright terms: Public domain W3C validator