MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprmul Structured version   Visualization version   GIF version

Theorem opprmul 19910
Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypotheses
Ref Expression
opprval.1 𝐵 = (Base‘𝑅)
opprval.2 · = (.r𝑅)
opprval.3 𝑂 = (oppr𝑅)
opprmulfval.4 = (.r𝑂)
Assertion
Ref Expression
opprmul (𝑋 𝑌) = (𝑌 · 𝑋)

Proof of Theorem opprmul
StepHypRef Expression
1 opprval.1 . . . 4 𝐵 = (Base‘𝑅)
2 opprval.2 . . . 4 · = (.r𝑅)
3 opprval.3 . . . 4 𝑂 = (oppr𝑅)
4 opprmulfval.4 . . . 4 = (.r𝑂)
51, 2, 3, 4opprmulfval 19909 . . 3 = tpos ·
65oveqi 7320 . 2 (𝑋 𝑌) = (𝑋tpos · 𝑌)
7 ovtpos 8088 . 2 (𝑋tpos · 𝑌) = (𝑌 · 𝑋)
86, 7eqtri 2764 1 (𝑋 𝑌) = (𝑌 · 𝑋)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cfv 6458  (class class class)co 7307  tpos ctpos 8072  Basecbs 16957  .rcmulr 17008  opprcoppr 19906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-1cn 10975  ax-addcl 10977
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-tpos 8073  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-nn 12020  df-2 12082  df-3 12083  df-sets 16910  df-slot 16928  df-ndx 16940  df-mulr 17021  df-oppr 19907
This theorem is referenced by:  crngoppr  19911  opprring  19918  opprringb  19919  oppr1  19921  mulgass3  19924  opprunit  19948  unitmulcl  19951  unitgrp  19954  unitpropd  19984  opprirred  19989  irredlmul  19995  isdrng2  20046  isdrngrd  20062  subrguss  20084  subrgunit  20087  opprsubrg  20090  srngmul  20163  issrngd  20166  2idlcpbl  20550  opprdomn  20617  psropprmul  21454  invrvald  21870  rhmopp  31563  ldualsmul  37191  lcdsmul  39658
  Copyright terms: Public domain W3C validator