| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opprmul | Structured version Visualization version GIF version | ||
| Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| Ref | Expression |
|---|---|
| opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
| opprval.2 | ⊢ · = (.r‘𝑅) |
| opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
| opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
| Ref | Expression |
|---|---|
| opprmul | ⊢ (𝑋 ∙ 𝑌) = (𝑌 · 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprval.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | opprval.2 | . . . 4 ⊢ · = (.r‘𝑅) | |
| 3 | opprval.3 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 4 | opprmulfval.4 | . . . 4 ⊢ ∙ = (.r‘𝑂) | |
| 5 | 1, 2, 3, 4 | opprmulfval 20224 | . . 3 ⊢ ∙ = tpos · |
| 6 | 5 | oveqi 7362 | . 2 ⊢ (𝑋 ∙ 𝑌) = (𝑋tpos · 𝑌) |
| 7 | ovtpos 8174 | . 2 ⊢ (𝑋tpos · 𝑌) = (𝑌 · 𝑋) | |
| 8 | 6, 7 | eqtri 2752 | 1 ⊢ (𝑋 ∙ 𝑌) = (𝑌 · 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ‘cfv 6482 (class class class)co 7349 tpos ctpos 8158 Basecbs 17120 .rcmulr 17162 opprcoppr 20221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-1cn 11067 ax-addcl 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-nn 12129 df-2 12191 df-3 12192 df-sets 17075 df-slot 17093 df-ndx 17105 df-mulr 17175 df-oppr 20222 |
| This theorem is referenced by: crngoppr 20226 opprrng 20230 opprrngb 20231 opprring 20232 opprringb 20233 oppr1 20235 mulgass3 20238 opprunit 20262 unitmulcl 20265 unitgrp 20268 unitpropd 20302 opprirred 20307 irredlmul 20313 rhmopp 20394 opprsubrng 20444 subrguss 20472 subrgunit 20475 opprsubrg 20478 opprdomnb 20602 isdomn4r 20604 isdrng2 20628 isdrngrd 20651 isdrngrdOLD 20653 srngmul 20737 issrngd 20740 rngridlmcl 21124 isridlrng 21126 isridl 21159 2idlcpblrng 21178 psropprmul 22120 invrvald 22561 isunit2 33180 isdrng4 33234 opprlidlabs 33422 opprqusmulr 33428 qsdrngi 33432 ldualsmul 39114 lcdsmul 41581 |
| Copyright terms: Public domain | W3C validator |