Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opprmul | Structured version Visualization version GIF version |
Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
opprval.2 | ⊢ · = (.r‘𝑅) |
opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
Ref | Expression |
---|---|
opprmul | ⊢ (𝑋 ∙ 𝑌) = (𝑌 · 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprval.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | opprval.2 | . . . 4 ⊢ · = (.r‘𝑅) | |
3 | opprval.3 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
4 | opprmulfval.4 | . . . 4 ⊢ ∙ = (.r‘𝑂) | |
5 | 1, 2, 3, 4 | opprmulfval 19845 | . . 3 ⊢ ∙ = tpos · |
6 | 5 | oveqi 7281 | . 2 ⊢ (𝑋 ∙ 𝑌) = (𝑋tpos · 𝑌) |
7 | ovtpos 8041 | . 2 ⊢ (𝑋tpos · 𝑌) = (𝑌 · 𝑋) | |
8 | 6, 7 | eqtri 2767 | 1 ⊢ (𝑋 ∙ 𝑌) = (𝑌 · 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ‘cfv 6430 (class class class)co 7268 tpos ctpos 8025 Basecbs 16893 .rcmulr 16944 opprcoppr 19842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-1cn 10913 ax-addcl 10915 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-nn 11957 df-2 12019 df-3 12020 df-sets 16846 df-slot 16864 df-ndx 16876 df-mulr 16957 df-oppr 19843 |
This theorem is referenced by: crngoppr 19847 opprring 19854 opprringb 19855 oppr1 19857 mulgass3 19860 opprunit 19884 unitmulcl 19887 unitgrp 19890 unitpropd 19920 opprirred 19925 irredlmul 19931 isdrng2 19982 isdrngrd 19998 subrguss 20020 subrgunit 20023 opprsubrg 20026 srngmul 20099 issrngd 20102 2idlcpbl 20486 opprdomn 20553 psropprmul 21390 invrvald 21806 rhmopp 31497 ldualsmul 37128 lcdsmul 39595 |
Copyright terms: Public domain | W3C validator |