MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprmul Structured version   Visualization version   GIF version

Theorem opprmul 20300
Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypotheses
Ref Expression
opprval.1 𝐵 = (Base‘𝑅)
opprval.2 · = (.r𝑅)
opprval.3 𝑂 = (oppr𝑅)
opprmulfval.4 = (.r𝑂)
Assertion
Ref Expression
opprmul (𝑋 𝑌) = (𝑌 · 𝑋)

Proof of Theorem opprmul
StepHypRef Expression
1 opprval.1 . . . 4 𝐵 = (Base‘𝑅)
2 opprval.2 . . . 4 · = (.r𝑅)
3 opprval.3 . . . 4 𝑂 = (oppr𝑅)
4 opprmulfval.4 . . . 4 = (.r𝑂)
51, 2, 3, 4opprmulfval 20299 . . 3 = tpos ·
65oveqi 7418 . 2 (𝑋 𝑌) = (𝑋tpos · 𝑌)
7 ovtpos 8240 . 2 (𝑋tpos · 𝑌) = (𝑌 · 𝑋)
86, 7eqtri 2758 1 (𝑋 𝑌) = (𝑌 · 𝑋)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cfv 6531  (class class class)co 7405  tpos ctpos 8224  Basecbs 17228  .rcmulr 17272  opprcoppr 20296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-1cn 11187  ax-addcl 11189
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-nn 12241  df-2 12303  df-3 12304  df-sets 17183  df-slot 17201  df-ndx 17213  df-mulr 17285  df-oppr 20297
This theorem is referenced by:  crngoppr  20301  opprrng  20305  opprrngb  20306  opprring  20307  opprringb  20308  oppr1  20310  mulgass3  20313  opprunit  20337  unitmulcl  20340  unitgrp  20343  unitpropd  20377  opprirred  20382  irredlmul  20388  rhmopp  20469  opprsubrng  20519  subrguss  20547  subrgunit  20550  opprsubrg  20553  opprdomnb  20677  isdomn4r  20679  isdrng2  20703  isdrngrd  20726  isdrngrdOLD  20728  srngmul  20812  issrngd  20815  rngridlmcl  21178  isridlrng  21180  isridl  21213  2idlcpblrng  21232  psropprmul  22173  invrvald  22614  isunit2  33235  isdrng4  33289  opprlidlabs  33500  opprqusmulr  33506  qsdrngi  33510  ldualsmul  39153  lcdsmul  41621
  Copyright terms: Public domain W3C validator