| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppchom | Structured version Visualization version GIF version | ||
| Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| oppchom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| oppchom.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| Ref | Expression |
|---|---|
| oppchom | ⊢ (𝑋(Hom ‘𝑂)𝑌) = (𝑌𝐻𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppchom.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 2 | oppchom.o | . . . 4 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 3 | 1, 2 | oppchomfval 17675 | . . 3 ⊢ tpos 𝐻 = (Hom ‘𝑂) |
| 4 | 3 | oveqi 7400 | . 2 ⊢ (𝑋tpos 𝐻𝑌) = (𝑋(Hom ‘𝑂)𝑌) |
| 5 | ovtpos 8220 | . 2 ⊢ (𝑋tpos 𝐻𝑌) = (𝑌𝐻𝑋) | |
| 6 | 4, 5 | eqtr3i 2754 | 1 ⊢ (𝑋(Hom ‘𝑂)𝑌) = (𝑌𝐻𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ‘cfv 6511 (class class class)co 7387 tpos ctpos 8204 Hom chom 17231 oppCatcoppc 17672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-hom 17244 df-cco 17245 df-oppc 17673 |
| This theorem is referenced by: oppccatid 17680 oppchomf 17681 oppccomfpropd 17688 isepi 17702 epii 17705 oppcsect 17740 funcoppc 17837 fulloppc 17886 fthepi 17892 dfinito2 17965 dftermo2 17966 hofcl 18220 yon11 18225 yon12 18226 yon2 18227 yonedalem4c 18238 yonedalem22 18239 yonedalem3b 18240 yonedalem3 18241 yonedainv 18242 oppcuprcl5 49187 oppcup 49193 natoppf 49215 oppc1stf 49274 oppc2ndf 49275 fucoppcco 49395 fucoppc 49396 oppfdiag1 49400 oppfdiag 49402 oppcthin 49424 oppcthinco 49425 oduoppcciso 49552 oppgoppchom 49576 lmddu 49653 |
| Copyright terms: Public domain | W3C validator |