| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppchom | Structured version Visualization version GIF version | ||
| Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| oppchom.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| oppchom.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| Ref | Expression |
|---|---|
| oppchom | ⊢ (𝑋(Hom ‘𝑂)𝑌) = (𝑌𝐻𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppchom.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 2 | oppchom.o | . . . 4 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 3 | 1, 2 | oppchomfval 17711 | . . 3 ⊢ tpos 𝐻 = (Hom ‘𝑂) |
| 4 | 3 | oveqi 7412 | . 2 ⊢ (𝑋tpos 𝐻𝑌) = (𝑋(Hom ‘𝑂)𝑌) |
| 5 | ovtpos 8234 | . 2 ⊢ (𝑋tpos 𝐻𝑌) = (𝑌𝐻𝑋) | |
| 6 | 4, 5 | eqtr3i 2759 | 1 ⊢ (𝑋(Hom ‘𝑂)𝑌) = (𝑌𝐻𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ‘cfv 6527 (class class class)co 7399 tpos ctpos 8218 Hom chom 17267 oppCatcoppc 17708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-2nd 7983 df-tpos 8219 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-hom 17280 df-cco 17281 df-oppc 17709 |
| This theorem is referenced by: oppccatid 17716 oppchomf 17717 oppccomfpropd 17724 isepi 17738 epii 17741 oppcsect 17776 funcoppc 17873 fulloppc 17922 fthepi 17928 dfinito2 18001 dftermo2 18002 hofcl 18256 yon11 18261 yon12 18262 yon2 18263 yonedalem4c 18274 yonedalem22 18275 yonedalem3b 18276 yonedalem3 18277 yonedainv 18278 oppcup 48951 oppcthin 49111 oppcthinco 49112 oduoppcciso 49228 oppgoppchom 49252 |
| Copyright terms: Public domain | W3C validator |