MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcco Structured version   Visualization version   GIF version

Theorem oppcco 16577
Description: Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
oppcco.b 𝐵 = (Base‘𝐶)
oppcco.c · = (comp‘𝐶)
oppcco.o 𝑂 = (oppCat‘𝐶)
oppcco.x (𝜑𝑋𝐵)
oppcco.y (𝜑𝑌𝐵)
oppcco.z (𝜑𝑍𝐵)
Assertion
Ref Expression
oppcco (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑍)𝐹) = (𝐹(⟨𝑍, 𝑌· 𝑋)𝐺))

Proof of Theorem oppcco
StepHypRef Expression
1 oppcco.b . . . 4 𝐵 = (Base‘𝐶)
2 oppcco.c . . . 4 · = (comp‘𝐶)
3 oppcco.o . . . 4 𝑂 = (oppCat‘𝐶)
4 oppcco.x . . . 4 (𝜑𝑋𝐵)
5 oppcco.y . . . 4 (𝜑𝑌𝐵)
6 oppcco.z . . . 4 (𝜑𝑍𝐵)
71, 2, 3, 4, 5, 6oppccofval 16576 . . 3 (𝜑 → (⟨𝑋, 𝑌⟩(comp‘𝑂)𝑍) = tpos (⟨𝑍, 𝑌· 𝑋))
87oveqd 6808 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑍)𝐹) = (𝐺tpos (⟨𝑍, 𝑌· 𝑋)𝐹))
9 ovtpos 7517 . 2 (𝐺tpos (⟨𝑍, 𝑌· 𝑋)𝐹) = (𝐹(⟨𝑍, 𝑌· 𝑋)𝐺)
108, 9syl6eq 2821 1 (𝜑 → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑍)𝐹) = (𝐹(⟨𝑍, 𝑌· 𝑋)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  cop 4322  cfv 6029  (class class class)co 6791  tpos ctpos 7501  Basecbs 16057  compcco 16154  oppCatcoppc 16571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-tpos 7502  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-pnf 10276  df-mnf 10277  df-ltxr 10279  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-dec 11694  df-ndx 16060  df-slot 16061  df-sets 16064  df-cco 16168  df-oppc 16572
This theorem is referenced by:  oppccatid  16579  2oppccomf  16585  oppccomfpropd  16587  isepi  16600  epii  16603  oppcsect  16638  funcoppc  16735  hofcl  17100  yon12  17106  yon2  17107  yonedalem4c  17118
  Copyright terms: Public domain W3C validator