![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppcco | Structured version Visualization version GIF version |
Description: Composition in the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
oppcco.b | β’ π΅ = (BaseβπΆ) |
oppcco.c | β’ Β· = (compβπΆ) |
oppcco.o | β’ π = (oppCatβπΆ) |
oppcco.x | β’ (π β π β π΅) |
oppcco.y | β’ (π β π β π΅) |
oppcco.z | β’ (π β π β π΅) |
Ref | Expression |
---|---|
oppcco | β’ (π β (πΊ(β¨π, πβ©(compβπ)π)πΉ) = (πΉ(β¨π, πβ© Β· π)πΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcco.b | . . . 4 β’ π΅ = (BaseβπΆ) | |
2 | oppcco.c | . . . 4 β’ Β· = (compβπΆ) | |
3 | oppcco.o | . . . 4 β’ π = (oppCatβπΆ) | |
4 | oppcco.x | . . . 4 β’ (π β π β π΅) | |
5 | oppcco.y | . . . 4 β’ (π β π β π΅) | |
6 | oppcco.z | . . . 4 β’ (π β π β π΅) | |
7 | 1, 2, 3, 4, 5, 6 | oppccofval 17668 | . . 3 β’ (π β (β¨π, πβ©(compβπ)π) = tpos (β¨π, πβ© Β· π)) |
8 | 7 | oveqd 7429 | . 2 β’ (π β (πΊ(β¨π, πβ©(compβπ)π)πΉ) = (πΊtpos (β¨π, πβ© Β· π)πΉ)) |
9 | ovtpos 8232 | . 2 β’ (πΊtpos (β¨π, πβ© Β· π)πΉ) = (πΉ(β¨π, πβ© Β· π)πΊ) | |
10 | 8, 9 | eqtrdi 2787 | 1 β’ (π β (πΊ(β¨π, πβ©(compβπ)π)πΉ) = (πΉ(β¨π, πβ© Β· π)πΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 β¨cop 4634 βcfv 6543 (class class class)co 7412 tpos ctpos 8216 Basecbs 17151 compcco 17216 oppCatcoppc 17662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-ltxr 11260 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-dec 12685 df-sets 17104 df-slot 17122 df-ndx 17134 df-cco 17229 df-oppc 17663 |
This theorem is referenced by: oppccatid 17672 2oppccomf 17678 oppccomfpropd 17680 isepi 17694 epii 17697 oppcsect 17732 funcoppc 17832 hofcl 18222 yon12 18228 yon2 18229 yonedalem4c 18240 |
Copyright terms: Public domain | W3C validator |