MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunisuc Structured version   Visualization version   GIF version

Theorem itunisuc 10372
Description: Successor iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
itunisuc ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)

Proof of Theorem itunisuc
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 frsuc 8405 . . . . . 6 (𝐵 ∈ ω → ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑦 ∈ V ↦ 𝑦)‘((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)))
2 fvex 6871 . . . . . . 7 ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) ∈ V
3 unieq 4882 . . . . . . . 8 (𝑎 = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) → 𝑎 = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
4 unieq 4882 . . . . . . . . 9 (𝑦 = 𝑎 𝑦 = 𝑎)
54cbvmptv 5211 . . . . . . . 8 (𝑦 ∈ V ↦ 𝑦) = (𝑎 ∈ V ↦ 𝑎)
62uniex 7717 . . . . . . . 8 ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) ∈ V
73, 5, 6fvmpt 6968 . . . . . . 7 (((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) ∈ V → ((𝑦 ∈ V ↦ 𝑦)‘((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
82, 7ax-mp 5 . . . . . 6 ((𝑦 ∈ V ↦ 𝑦)‘((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)
91, 8eqtrdi 2780 . . . . 5 (𝐵 ∈ ω → ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
109adantl 481 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
11 ituni.u . . . . . . 7 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
1211itunifval 10369 . . . . . 6 (𝐴 ∈ V → (𝑈𝐴) = (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω))
1312fveq1d 6860 . . . . 5 (𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵))
1413adantr 480 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵))
1512fveq1d 6860 . . . . . 6 (𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
1615adantr 480 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
1716unieqd 4884 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
1810, 14, 173eqtr4d 2774 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
19 uni0 4899 . . . . 5 ∅ = ∅
2019eqcomi 2738 . . . 4 ∅ =
2111itunifn 10370 . . . . . . . . . 10 (𝐴 ∈ V → (𝑈𝐴) Fn ω)
2221fndmd 6623 . . . . . . . . 9 (𝐴 ∈ V → dom (𝑈𝐴) = ω)
2322eleq2d 2814 . . . . . . . 8 (𝐴 ∈ V → (suc 𝐵 ∈ dom (𝑈𝐴) ↔ suc 𝐵 ∈ ω))
24 peano2b 7859 . . . . . . . 8 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
2523, 24bitr4di 289 . . . . . . 7 (𝐴 ∈ V → (suc 𝐵 ∈ dom (𝑈𝐴) ↔ 𝐵 ∈ ω))
2625notbid 318 . . . . . 6 (𝐴 ∈ V → (¬ suc 𝐵 ∈ dom (𝑈𝐴) ↔ ¬ 𝐵 ∈ ω))
2726biimpar 477 . . . . 5 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ¬ suc 𝐵 ∈ dom (𝑈𝐴))
28 ndmfv 6893 . . . . 5 (¬ suc 𝐵 ∈ dom (𝑈𝐴) → ((𝑈𝐴)‘suc 𝐵) = ∅)
2927, 28syl 17 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ∅)
3022eleq2d 2814 . . . . . . . 8 (𝐴 ∈ V → (𝐵 ∈ dom (𝑈𝐴) ↔ 𝐵 ∈ ω))
3130notbid 318 . . . . . . 7 (𝐴 ∈ V → (¬ 𝐵 ∈ dom (𝑈𝐴) ↔ ¬ 𝐵 ∈ ω))
3231biimpar 477 . . . . . 6 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ¬ 𝐵 ∈ dom (𝑈𝐴))
33 ndmfv 6893 . . . . . 6 𝐵 ∈ dom (𝑈𝐴) → ((𝑈𝐴)‘𝐵) = ∅)
3432, 33syl 17 . . . . 5 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ∅)
3534unieqd 4884 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ∅)
3620, 29, 353eqtr4a 2790 . . 3 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
3718, 36pm2.61dan 812 . 2 (𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
38 0fv 6902 . . . . 5 (∅‘𝐵) = ∅
3938unieqi 4883 . . . 4 (∅‘𝐵) =
40 0fv 6902 . . . 4 (∅‘suc 𝐵) = ∅
4119, 39, 403eqtr4ri 2763 . . 3 (∅‘suc 𝐵) = (∅‘𝐵)
42 fvprc 6850 . . . 4 𝐴 ∈ V → (𝑈𝐴) = ∅)
4342fveq1d 6860 . . 3 𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = (∅‘suc 𝐵))
4442fveq1d 6860 . . . 4 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = (∅‘𝐵))
4544unieqd 4884 . . 3 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = (∅‘𝐵))
4641, 43, 453eqtr4a 2790 . 2 𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
4737, 46pm2.61i 182 1 ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296   cuni 4871  cmpt 5188  dom cdm 5638  cres 5640  suc csuc 6334  cfv 6511  ωcom 7842  reccrdg 8377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378
This theorem is referenced by:  itunitc1  10373  itunitc  10374  ituniiun  10375
  Copyright terms: Public domain W3C validator