MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunisuc Structured version   Visualization version   GIF version

Theorem itunisuc 10459
Description: Successor iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
itunisuc ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)

Proof of Theorem itunisuc
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 frsuc 8477 . . . . . 6 (𝐵 ∈ ω → ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑦 ∈ V ↦ 𝑦)‘((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)))
2 fvex 6919 . . . . . . 7 ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) ∈ V
3 unieq 4918 . . . . . . . 8 (𝑎 = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) → 𝑎 = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
4 unieq 4918 . . . . . . . . 9 (𝑦 = 𝑎 𝑦 = 𝑎)
54cbvmptv 5255 . . . . . . . 8 (𝑦 ∈ V ↦ 𝑦) = (𝑎 ∈ V ↦ 𝑎)
62uniex 7761 . . . . . . . 8 ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) ∈ V
73, 5, 6fvmpt 7016 . . . . . . 7 (((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) ∈ V → ((𝑦 ∈ V ↦ 𝑦)‘((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
82, 7ax-mp 5 . . . . . 6 ((𝑦 ∈ V ↦ 𝑦)‘((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)
91, 8eqtrdi 2793 . . . . 5 (𝐵 ∈ ω → ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
109adantl 481 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
11 ituni.u . . . . . . 7 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
1211itunifval 10456 . . . . . 6 (𝐴 ∈ V → (𝑈𝐴) = (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω))
1312fveq1d 6908 . . . . 5 (𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵))
1413adantr 480 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵))
1512fveq1d 6908 . . . . . 6 (𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
1615adantr 480 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
1716unieqd 4920 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
1810, 14, 173eqtr4d 2787 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
19 uni0 4935 . . . . 5 ∅ = ∅
2019eqcomi 2746 . . . 4 ∅ =
2111itunifn 10457 . . . . . . . . . 10 (𝐴 ∈ V → (𝑈𝐴) Fn ω)
2221fndmd 6673 . . . . . . . . 9 (𝐴 ∈ V → dom (𝑈𝐴) = ω)
2322eleq2d 2827 . . . . . . . 8 (𝐴 ∈ V → (suc 𝐵 ∈ dom (𝑈𝐴) ↔ suc 𝐵 ∈ ω))
24 peano2b 7904 . . . . . . . 8 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
2523, 24bitr4di 289 . . . . . . 7 (𝐴 ∈ V → (suc 𝐵 ∈ dom (𝑈𝐴) ↔ 𝐵 ∈ ω))
2625notbid 318 . . . . . 6 (𝐴 ∈ V → (¬ suc 𝐵 ∈ dom (𝑈𝐴) ↔ ¬ 𝐵 ∈ ω))
2726biimpar 477 . . . . 5 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ¬ suc 𝐵 ∈ dom (𝑈𝐴))
28 ndmfv 6941 . . . . 5 (¬ suc 𝐵 ∈ dom (𝑈𝐴) → ((𝑈𝐴)‘suc 𝐵) = ∅)
2927, 28syl 17 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ∅)
3022eleq2d 2827 . . . . . . . 8 (𝐴 ∈ V → (𝐵 ∈ dom (𝑈𝐴) ↔ 𝐵 ∈ ω))
3130notbid 318 . . . . . . 7 (𝐴 ∈ V → (¬ 𝐵 ∈ dom (𝑈𝐴) ↔ ¬ 𝐵 ∈ ω))
3231biimpar 477 . . . . . 6 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ¬ 𝐵 ∈ dom (𝑈𝐴))
33 ndmfv 6941 . . . . . 6 𝐵 ∈ dom (𝑈𝐴) → ((𝑈𝐴)‘𝐵) = ∅)
3432, 33syl 17 . . . . 5 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ∅)
3534unieqd 4920 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ∅)
3620, 29, 353eqtr4a 2803 . . 3 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
3718, 36pm2.61dan 813 . 2 (𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
38 0fv 6950 . . . . 5 (∅‘𝐵) = ∅
3938unieqi 4919 . . . 4 (∅‘𝐵) =
40 0fv 6950 . . . 4 (∅‘suc 𝐵) = ∅
4119, 39, 403eqtr4ri 2776 . . 3 (∅‘suc 𝐵) = (∅‘𝐵)
42 fvprc 6898 . . . 4 𝐴 ∈ V → (𝑈𝐴) = ∅)
4342fveq1d 6908 . . 3 𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = (∅‘suc 𝐵))
4442fveq1d 6908 . . . 4 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = (∅‘𝐵))
4544unieqd 4920 . . 3 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = (∅‘𝐵))
4641, 43, 453eqtr4a 2803 . 2 𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
4737, 46pm2.61i 182 1 ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  c0 4333   cuni 4907  cmpt 5225  dom cdm 5685  cres 5687  suc csuc 6386  cfv 6561  ωcom 7887  reccrdg 8449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450
This theorem is referenced by:  itunitc1  10460  itunitc  10461  ituniiun  10462
  Copyright terms: Public domain W3C validator