MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunisuc Structured version   Visualization version   GIF version

Theorem itunisuc 10355
Description: Successor iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
itunisuc ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)

Proof of Theorem itunisuc
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 frsuc 8383 . . . . . 6 (𝐵 ∈ ω → ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑦 ∈ V ↦ 𝑦)‘((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)))
2 fvex 6855 . . . . . . 7 ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) ∈ V
3 unieq 4876 . . . . . . . 8 (𝑎 = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) → 𝑎 = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
4 unieq 4876 . . . . . . . . 9 (𝑦 = 𝑎 𝑦 = 𝑎)
54cbvmptv 5218 . . . . . . . 8 (𝑦 ∈ V ↦ 𝑦) = (𝑎 ∈ V ↦ 𝑎)
62uniex 7678 . . . . . . . 8 ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) ∈ V
73, 5, 6fvmpt 6948 . . . . . . 7 (((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) ∈ V → ((𝑦 ∈ V ↦ 𝑦)‘((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
82, 7ax-mp 5 . . . . . 6 ((𝑦 ∈ V ↦ 𝑦)‘((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)
91, 8eqtrdi 2792 . . . . 5 (𝐵 ∈ ω → ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
109adantl 482 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
11 ituni.u . . . . . . 7 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
1211itunifval 10352 . . . . . 6 (𝐴 ∈ V → (𝑈𝐴) = (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω))
1312fveq1d 6844 . . . . 5 (𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵))
1413adantr 481 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵))
1512fveq1d 6844 . . . . . 6 (𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
1615adantr 481 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
1716unieqd 4879 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
1810, 14, 173eqtr4d 2786 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
19 uni0 4896 . . . . 5 ∅ = ∅
2019eqcomi 2745 . . . 4 ∅ =
2111itunifn 10353 . . . . . . . . . 10 (𝐴 ∈ V → (𝑈𝐴) Fn ω)
2221fndmd 6607 . . . . . . . . 9 (𝐴 ∈ V → dom (𝑈𝐴) = ω)
2322eleq2d 2823 . . . . . . . 8 (𝐴 ∈ V → (suc 𝐵 ∈ dom (𝑈𝐴) ↔ suc 𝐵 ∈ ω))
24 peano2b 7819 . . . . . . . 8 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
2523, 24bitr4di 288 . . . . . . 7 (𝐴 ∈ V → (suc 𝐵 ∈ dom (𝑈𝐴) ↔ 𝐵 ∈ ω))
2625notbid 317 . . . . . 6 (𝐴 ∈ V → (¬ suc 𝐵 ∈ dom (𝑈𝐴) ↔ ¬ 𝐵 ∈ ω))
2726biimpar 478 . . . . 5 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ¬ suc 𝐵 ∈ dom (𝑈𝐴))
28 ndmfv 6877 . . . . 5 (¬ suc 𝐵 ∈ dom (𝑈𝐴) → ((𝑈𝐴)‘suc 𝐵) = ∅)
2927, 28syl 17 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ∅)
3022eleq2d 2823 . . . . . . . 8 (𝐴 ∈ V → (𝐵 ∈ dom (𝑈𝐴) ↔ 𝐵 ∈ ω))
3130notbid 317 . . . . . . 7 (𝐴 ∈ V → (¬ 𝐵 ∈ dom (𝑈𝐴) ↔ ¬ 𝐵 ∈ ω))
3231biimpar 478 . . . . . 6 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ¬ 𝐵 ∈ dom (𝑈𝐴))
33 ndmfv 6877 . . . . . 6 𝐵 ∈ dom (𝑈𝐴) → ((𝑈𝐴)‘𝐵) = ∅)
3432, 33syl 17 . . . . 5 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ∅)
3534unieqd 4879 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ∅)
3620, 29, 353eqtr4a 2802 . . 3 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
3718, 36pm2.61dan 811 . 2 (𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
38 0fv 6886 . . . . 5 (∅‘𝐵) = ∅
3938unieqi 4878 . . . 4 (∅‘𝐵) =
40 0fv 6886 . . . 4 (∅‘suc 𝐵) = ∅
4119, 39, 403eqtr4ri 2775 . . 3 (∅‘suc 𝐵) = (∅‘𝐵)
42 fvprc 6834 . . . 4 𝐴 ∈ V → (𝑈𝐴) = ∅)
4342fveq1d 6844 . . 3 𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = (∅‘suc 𝐵))
4442fveq1d 6844 . . . 4 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = (∅‘𝐵))
4544unieqd 4879 . . 3 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = (∅‘𝐵))
4641, 43, 453eqtr4a 2802 . 2 𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
4737, 46pm2.61i 182 1 ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  c0 4282   cuni 4865  cmpt 5188  dom cdm 5633  cres 5635  suc csuc 6319  cfv 6496  ωcom 7802  reccrdg 8355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356
This theorem is referenced by:  itunitc1  10356  itunitc  10357  ituniiun  10358
  Copyright terms: Public domain W3C validator