Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtridfv1 Structured version   Visualization version   GIF version

Theorem pmtridfv1 31264
Description: Value at X of the transposition of 𝑋 and 𝑌 (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.)
Hypotheses
Ref Expression
pmtridf1o.a (𝜑𝐴𝑉)
pmtridf1o.x (𝜑𝑋𝐴)
pmtridf1o.y (𝜑𝑌𝐴)
pmtridf1o.t 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
Assertion
Ref Expression
pmtridfv1 (𝜑 → (𝑇𝑋) = 𝑌)

Proof of Theorem pmtridfv1
StepHypRef Expression
1 pmtridf1o.t . . . . 5 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
2 simpr 484 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
32iftrued 4464 . . . . 5 ((𝜑𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴))
41, 3syl5eq 2791 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴))
54fveq1d 6758 . . 3 ((𝜑𝑋 = 𝑌) → (𝑇𝑋) = (( I ↾ 𝐴)‘𝑋))
6 pmtridf1o.x . . . . 5 (𝜑𝑋𝐴)
7 fvresi 7027 . . . . 5 (𝑋𝐴 → (( I ↾ 𝐴)‘𝑋) = 𝑋)
86, 7syl 17 . . . 4 (𝜑 → (( I ↾ 𝐴)‘𝑋) = 𝑋)
98adantr 480 . . 3 ((𝜑𝑋 = 𝑌) → (( I ↾ 𝐴)‘𝑋) = 𝑋)
105, 9, 23eqtrd 2782 . 2 ((𝜑𝑋 = 𝑌) → (𝑇𝑋) = 𝑌)
11 simpr 484 . . . . . . 7 ((𝜑𝑋𝑌) → 𝑋𝑌)
1211neneqd 2947 . . . . . 6 ((𝜑𝑋𝑌) → ¬ 𝑋 = 𝑌)
1312iffalsed 4467 . . . . 5 ((𝜑𝑋𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
141, 13syl5eq 2791 . . . 4 ((𝜑𝑋𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
1514fveq1d 6758 . . 3 ((𝜑𝑋𝑌) → (𝑇𝑋) = (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑋))
16 pmtridf1o.a . . . . 5 (𝜑𝐴𝑉)
1716adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝐴𝑉)
186adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝑋𝐴)
19 pmtridf1o.y . . . . 5 (𝜑𝑌𝐴)
2019adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝑌𝐴)
21 eqid 2738 . . . . 5 (pmTrsp‘𝐴) = (pmTrsp‘𝐴)
2221pmtrprfv 18976 . . . 4 ((𝐴𝑉 ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑋) = 𝑌)
2317, 18, 20, 11, 22syl13anc 1370 . . 3 ((𝜑𝑋𝑌) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑋) = 𝑌)
2415, 23eqtrd 2778 . 2 ((𝜑𝑋𝑌) → (𝑇𝑋) = 𝑌)
2510, 24pm2.61dane 3031 1 (𝜑 → (𝑇𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  ifcif 4456  {cpr 4560   I cid 5479  cres 5582  cfv 6418  pmTrspcpmtr 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pmtr 18965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator