| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmtridfv1 | Structured version Visualization version GIF version | ||
| Description: Value at X of the transposition of 𝑋 and 𝑌 (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.) |
| Ref | Expression |
|---|---|
| pmtridf1o.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| pmtridf1o.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| pmtridf1o.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| pmtridf1o.t | ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
| Ref | Expression |
|---|---|
| pmtridfv1 | ⊢ (𝜑 → (𝑇‘𝑋) = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtridf1o.t | . . . . 5 ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) | |
| 2 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 3 | 2 | iftrued 4499 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴)) |
| 4 | 1, 3 | eqtrid 2777 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴)) |
| 5 | 4 | fveq1d 6863 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑇‘𝑋) = (( I ↾ 𝐴)‘𝑋)) |
| 6 | pmtridf1o.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 7 | fvresi 7150 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑋) = 𝑋) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝐴)‘𝑋) = 𝑋) |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (( I ↾ 𝐴)‘𝑋) = 𝑋) |
| 10 | 5, 9, 2 | 3eqtrd 2769 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑇‘𝑋) = 𝑌) |
| 11 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
| 12 | 11 | neneqd 2931 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ¬ 𝑋 = 𝑌) |
| 13 | 12 | iffalsed 4502 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
| 14 | 1, 13 | eqtrid 2777 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
| 15 | 14 | fveq1d 6863 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑇‘𝑋) = (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑋)) |
| 16 | pmtridf1o.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ 𝑉) |
| 18 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝐴) |
| 19 | pmtridf1o.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝐴) |
| 21 | eqid 2730 | . . . . 5 ⊢ (pmTrsp‘𝐴) = (pmTrsp‘𝐴) | |
| 22 | 21 | pmtrprfv 19390 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑋) = 𝑌) |
| 23 | 17, 18, 20, 11, 22 | syl13anc 1374 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑋) = 𝑌) |
| 24 | 15, 23 | eqtrd 2765 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑇‘𝑋) = 𝑌) |
| 25 | 10, 24 | pm2.61dane 3013 | 1 ⊢ (𝜑 → (𝑇‘𝑋) = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ifcif 4491 {cpr 4594 I cid 5535 ↾ cres 5643 ‘cfv 6514 pmTrspcpmtr 19378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-1o 8437 df-2o 8438 df-en 8922 df-pmtr 19379 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |