Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtridfv1 Structured version   Visualization version   GIF version

Theorem pmtridfv1 33059
Description: Value at X of the transposition of 𝑋 and 𝑌 (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.)
Hypotheses
Ref Expression
pmtridf1o.a (𝜑𝐴𝑉)
pmtridf1o.x (𝜑𝑋𝐴)
pmtridf1o.y (𝜑𝑌𝐴)
pmtridf1o.t 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
Assertion
Ref Expression
pmtridfv1 (𝜑 → (𝑇𝑋) = 𝑌)

Proof of Theorem pmtridfv1
StepHypRef Expression
1 pmtridf1o.t . . . . 5 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
2 simpr 484 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
32iftrued 4499 . . . . 5 ((𝜑𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴))
41, 3eqtrid 2777 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴))
54fveq1d 6863 . . 3 ((𝜑𝑋 = 𝑌) → (𝑇𝑋) = (( I ↾ 𝐴)‘𝑋))
6 pmtridf1o.x . . . . 5 (𝜑𝑋𝐴)
7 fvresi 7150 . . . . 5 (𝑋𝐴 → (( I ↾ 𝐴)‘𝑋) = 𝑋)
86, 7syl 17 . . . 4 (𝜑 → (( I ↾ 𝐴)‘𝑋) = 𝑋)
98adantr 480 . . 3 ((𝜑𝑋 = 𝑌) → (( I ↾ 𝐴)‘𝑋) = 𝑋)
105, 9, 23eqtrd 2769 . 2 ((𝜑𝑋 = 𝑌) → (𝑇𝑋) = 𝑌)
11 simpr 484 . . . . . . 7 ((𝜑𝑋𝑌) → 𝑋𝑌)
1211neneqd 2931 . . . . . 6 ((𝜑𝑋𝑌) → ¬ 𝑋 = 𝑌)
1312iffalsed 4502 . . . . 5 ((𝜑𝑋𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
141, 13eqtrid 2777 . . . 4 ((𝜑𝑋𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
1514fveq1d 6863 . . 3 ((𝜑𝑋𝑌) → (𝑇𝑋) = (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑋))
16 pmtridf1o.a . . . . 5 (𝜑𝐴𝑉)
1716adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝐴𝑉)
186adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝑋𝐴)
19 pmtridf1o.y . . . . 5 (𝜑𝑌𝐴)
2019adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝑌𝐴)
21 eqid 2730 . . . . 5 (pmTrsp‘𝐴) = (pmTrsp‘𝐴)
2221pmtrprfv 19390 . . . 4 ((𝐴𝑉 ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑋) = 𝑌)
2317, 18, 20, 11, 22syl13anc 1374 . . 3 ((𝜑𝑋𝑌) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑋) = 𝑌)
2415, 23eqtrd 2765 . 2 ((𝜑𝑋𝑌) → (𝑇𝑋) = 𝑌)
2510, 24pm2.61dane 3013 1 (𝜑 → (𝑇𝑋) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  ifcif 4491  {cpr 4594   I cid 5535  cres 5643  cfv 6514  pmTrspcpmtr 19378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-1o 8437  df-2o 8438  df-en 8922  df-pmtr 19379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator