| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmtridfv2 | Structured version Visualization version GIF version | ||
| Description: Value at Y of the transposition of 𝑋 and 𝑌 (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.) |
| Ref | Expression |
|---|---|
| pmtridf1o.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| pmtridf1o.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| pmtridf1o.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| pmtridf1o.t | ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
| Ref | Expression |
|---|---|
| pmtridfv2 | ⊢ (𝜑 → (𝑇‘𝑌) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtridf1o.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 2 | fvresi 7107 | . . . . 5 ⊢ (𝑌 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑌) = 𝑌) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝐴)‘𝑌) = 𝑌) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (( I ↾ 𝐴)‘𝑌) = 𝑌) |
| 5 | pmtridf1o.t | . . . . 5 ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) | |
| 6 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 7 | 6 | iftrued 4483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴)) |
| 8 | 5, 7 | eqtrid 2778 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴)) |
| 9 | 8 | fveq1d 6824 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑇‘𝑌) = (( I ↾ 𝐴)‘𝑌)) |
| 10 | 4, 9, 6 | 3eqtr4d 2776 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑇‘𝑌) = 𝑋) |
| 11 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
| 12 | 11 | neneqd 2933 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ¬ 𝑋 = 𝑌) |
| 13 | 12 | iffalsed 4486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
| 14 | 5, 13 | eqtrid 2778 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
| 15 | 14 | fveq1d 6824 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑇‘𝑌) = (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌)) |
| 16 | pmtridf1o.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ 𝑉) |
| 18 | pmtridf1o.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝐴) |
| 20 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝐴) |
| 21 | eqid 2731 | . . . . 5 ⊢ (pmTrsp‘𝐴) = (pmTrsp‘𝐴) | |
| 22 | 21 | pmtrprfv2 33052 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌) = 𝑋) |
| 23 | 17, 19, 20, 11, 22 | syl13anc 1374 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌) = 𝑋) |
| 24 | 15, 23 | eqtrd 2766 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑇‘𝑌) = 𝑋) |
| 25 | 10, 24 | pm2.61dane 3015 | 1 ⊢ (𝜑 → (𝑇‘𝑌) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ifcif 4475 {cpr 4578 I cid 5510 ↾ cres 5618 ‘cfv 6481 pmTrspcpmtr 19351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-1o 8385 df-2o 8386 df-en 8870 df-pmtr 19352 |
| This theorem is referenced by: reprpmtf1o 34634 |
| Copyright terms: Public domain | W3C validator |