![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmtridfv2 | Structured version Visualization version GIF version |
Description: Value at Y of the transposition of 𝑋 and 𝑌 (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.) |
Ref | Expression |
---|---|
pmtridf1o.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
pmtridf1o.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
pmtridf1o.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
pmtridf1o.t | ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
pmtridfv2 | ⊢ (𝜑 → (𝑇‘𝑌) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtridf1o.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
2 | fvresi 7167 | . . . . 5 ⊢ (𝑌 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑌) = 𝑌) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝐴)‘𝑌) = 𝑌) |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (( I ↾ 𝐴)‘𝑌) = 𝑌) |
5 | pmtridf1o.t | . . . . 5 ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) | |
6 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
7 | 6 | iftrued 4531 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴)) |
8 | 5, 7 | eqtrid 2778 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴)) |
9 | 8 | fveq1d 6887 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑇‘𝑌) = (( I ↾ 𝐴)‘𝑌)) |
10 | 4, 9, 6 | 3eqtr4d 2776 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑇‘𝑌) = 𝑋) |
11 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
12 | 11 | neneqd 2939 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ¬ 𝑋 = 𝑌) |
13 | 12 | iffalsed 4534 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
14 | 5, 13 | eqtrid 2778 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
15 | 14 | fveq1d 6887 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑇‘𝑌) = (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌)) |
16 | pmtridf1o.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ 𝑉) |
18 | pmtridf1o.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝐴) |
20 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝐴) |
21 | eqid 2726 | . . . . 5 ⊢ (pmTrsp‘𝐴) = (pmTrsp‘𝐴) | |
22 | 21 | pmtrprfv2 32755 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌) = 𝑋) |
23 | 17, 19, 20, 11, 22 | syl13anc 1369 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌) = 𝑋) |
24 | 15, 23 | eqtrd 2766 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑇‘𝑌) = 𝑋) |
25 | 10, 24 | pm2.61dane 3023 | 1 ⊢ (𝜑 → (𝑇‘𝑌) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ifcif 4523 {cpr 4625 I cid 5566 ↾ cres 5671 ‘cfv 6537 pmTrspcpmtr 19361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-1o 8467 df-2o 8468 df-en 8942 df-pmtr 19362 |
This theorem is referenced by: reprpmtf1o 34167 |
Copyright terms: Public domain | W3C validator |