![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmtridfv2 | Structured version Visualization version GIF version |
Description: Value at Y of the transposition of 𝑋 and 𝑌 (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.) |
Ref | Expression |
---|---|
pmtridf1o.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
pmtridf1o.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
pmtridf1o.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
pmtridf1o.t | ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
pmtridfv2 | ⊢ (𝜑 → (𝑇‘𝑌) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtridf1o.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
2 | fvresi 7167 | . . . . 5 ⊢ (𝑌 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑌) = 𝑌) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝐴)‘𝑌) = 𝑌) |
4 | 3 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (( I ↾ 𝐴)‘𝑌) = 𝑌) |
5 | pmtridf1o.t | . . . . 5 ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) | |
6 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
7 | 6 | iftrued 4535 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴)) |
8 | 5, 7 | eqtrid 2784 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴)) |
9 | 8 | fveq1d 6890 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑇‘𝑌) = (( I ↾ 𝐴)‘𝑌)) |
10 | 4, 9, 6 | 3eqtr4d 2782 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑇‘𝑌) = 𝑋) |
11 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
12 | 11 | neneqd 2945 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ¬ 𝑋 = 𝑌) |
13 | 12 | iffalsed 4538 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
14 | 5, 13 | eqtrid 2784 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
15 | 14 | fveq1d 6890 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑇‘𝑌) = (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌)) |
16 | pmtridf1o.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
17 | 16 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ 𝑉) |
18 | pmtridf1o.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
19 | 18 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝐴) |
20 | 1 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝐴) |
21 | eqid 2732 | . . . . 5 ⊢ (pmTrsp‘𝐴) = (pmTrsp‘𝐴) | |
22 | 21 | pmtrprfv2 32236 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌) = 𝑋) |
23 | 17, 19, 20, 11, 22 | syl13anc 1372 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌) = 𝑋) |
24 | 15, 23 | eqtrd 2772 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑇‘𝑌) = 𝑋) |
25 | 10, 24 | pm2.61dane 3029 | 1 ⊢ (𝜑 → (𝑇‘𝑌) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ifcif 4527 {cpr 4629 I cid 5572 ↾ cres 5677 ‘cfv 6540 pmTrspcpmtr 19303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-1o 8462 df-2o 8463 df-en 8936 df-pmtr 19304 |
This theorem is referenced by: reprpmtf1o 33626 |
Copyright terms: Public domain | W3C validator |