Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtridfv2 Structured version   Visualization version   GIF version

Theorem pmtridfv2 31359
Description: Value at Y of the transposition of 𝑋 and 𝑌 (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.)
Hypotheses
Ref Expression
pmtridf1o.a (𝜑𝐴𝑉)
pmtridf1o.x (𝜑𝑋𝐴)
pmtridf1o.y (𝜑𝑌𝐴)
pmtridf1o.t 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
Assertion
Ref Expression
pmtridfv2 (𝜑 → (𝑇𝑌) = 𝑋)

Proof of Theorem pmtridfv2
StepHypRef Expression
1 pmtridf1o.y . . . . 5 (𝜑𝑌𝐴)
2 fvresi 7042 . . . . 5 (𝑌𝐴 → (( I ↾ 𝐴)‘𝑌) = 𝑌)
31, 2syl 17 . . . 4 (𝜑 → (( I ↾ 𝐴)‘𝑌) = 𝑌)
43adantr 481 . . 3 ((𝜑𝑋 = 𝑌) → (( I ↾ 𝐴)‘𝑌) = 𝑌)
5 pmtridf1o.t . . . . 5 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
6 simpr 485 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
76iftrued 4473 . . . . 5 ((𝜑𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴))
85, 7eqtrid 2792 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴))
98fveq1d 6773 . . 3 ((𝜑𝑋 = 𝑌) → (𝑇𝑌) = (( I ↾ 𝐴)‘𝑌))
104, 9, 63eqtr4d 2790 . 2 ((𝜑𝑋 = 𝑌) → (𝑇𝑌) = 𝑋)
11 simpr 485 . . . . . . 7 ((𝜑𝑋𝑌) → 𝑋𝑌)
1211neneqd 2950 . . . . . 6 ((𝜑𝑋𝑌) → ¬ 𝑋 = 𝑌)
1312iffalsed 4476 . . . . 5 ((𝜑𝑋𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
145, 13eqtrid 2792 . . . 4 ((𝜑𝑋𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
1514fveq1d 6773 . . 3 ((𝜑𝑋𝑌) → (𝑇𝑌) = (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌))
16 pmtridf1o.a . . . . 5 (𝜑𝐴𝑉)
1716adantr 481 . . . 4 ((𝜑𝑋𝑌) → 𝐴𝑉)
18 pmtridf1o.x . . . . 5 (𝜑𝑋𝐴)
1918adantr 481 . . . 4 ((𝜑𝑋𝑌) → 𝑋𝐴)
201adantr 481 . . . 4 ((𝜑𝑋𝑌) → 𝑌𝐴)
21 eqid 2740 . . . . 5 (pmTrsp‘𝐴) = (pmTrsp‘𝐴)
2221pmtrprfv2 31353 . . . 4 ((𝐴𝑉 ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌) = 𝑋)
2317, 19, 20, 11, 22syl13anc 1371 . . 3 ((𝜑𝑋𝑌) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌) = 𝑋)
2415, 23eqtrd 2780 . 2 ((𝜑𝑋𝑌) → (𝑇𝑌) = 𝑋)
2510, 24pm2.61dane 3034 1 (𝜑 → (𝑇𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wne 2945  ifcif 4465  {cpr 4569   I cid 5489  cres 5592  cfv 6432  pmTrspcpmtr 19047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-om 7707  df-1o 8288  df-2o 8289  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-pmtr 19048
This theorem is referenced by:  reprpmtf1o  32602
  Copyright terms: Public domain W3C validator