Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtridfv2 Structured version   Visualization version   GIF version

Theorem pmtridfv2 32860
Description: Value at Y of the transposition of 𝑋 and 𝑌 (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.)
Hypotheses
Ref Expression
pmtridf1o.a (𝜑𝐴𝑉)
pmtridf1o.x (𝜑𝑋𝐴)
pmtridf1o.y (𝜑𝑌𝐴)
pmtridf1o.t 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
Assertion
Ref Expression
pmtridfv2 (𝜑 → (𝑇𝑌) = 𝑋)

Proof of Theorem pmtridfv2
StepHypRef Expression
1 pmtridf1o.y . . . . 5 (𝜑𝑌𝐴)
2 fvresi 7177 . . . . 5 (𝑌𝐴 → (( I ↾ 𝐴)‘𝑌) = 𝑌)
31, 2syl 17 . . . 4 (𝜑 → (( I ↾ 𝐴)‘𝑌) = 𝑌)
43adantr 479 . . 3 ((𝜑𝑋 = 𝑌) → (( I ↾ 𝐴)‘𝑌) = 𝑌)
5 pmtridf1o.t . . . . 5 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
6 simpr 483 . . . . . 6 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
76iftrued 4532 . . . . 5 ((𝜑𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴))
85, 7eqtrid 2777 . . . 4 ((𝜑𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴))
98fveq1d 6893 . . 3 ((𝜑𝑋 = 𝑌) → (𝑇𝑌) = (( I ↾ 𝐴)‘𝑌))
104, 9, 63eqtr4d 2775 . 2 ((𝜑𝑋 = 𝑌) → (𝑇𝑌) = 𝑋)
11 simpr 483 . . . . . . 7 ((𝜑𝑋𝑌) → 𝑋𝑌)
1211neneqd 2935 . . . . . 6 ((𝜑𝑋𝑌) → ¬ 𝑋 = 𝑌)
1312iffalsed 4535 . . . . 5 ((𝜑𝑋𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
145, 13eqtrid 2777 . . . 4 ((𝜑𝑋𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌}))
1514fveq1d 6893 . . 3 ((𝜑𝑋𝑌) → (𝑇𝑌) = (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌))
16 pmtridf1o.a . . . . 5 (𝜑𝐴𝑉)
1716adantr 479 . . . 4 ((𝜑𝑋𝑌) → 𝐴𝑉)
18 pmtridf1o.x . . . . 5 (𝜑𝑋𝐴)
1918adantr 479 . . . 4 ((𝜑𝑋𝑌) → 𝑋𝐴)
201adantr 479 . . . 4 ((𝜑𝑋𝑌) → 𝑌𝐴)
21 eqid 2725 . . . . 5 (pmTrsp‘𝐴) = (pmTrsp‘𝐴)
2221pmtrprfv2 32854 . . . 4 ((𝐴𝑉 ∧ (𝑋𝐴𝑌𝐴𝑋𝑌)) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌) = 𝑋)
2317, 19, 20, 11, 22syl13anc 1369 . . 3 ((𝜑𝑋𝑌) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌) = 𝑋)
2415, 23eqtrd 2765 . 2 ((𝜑𝑋𝑌) → (𝑇𝑌) = 𝑋)
2510, 24pm2.61dane 3019 1 (𝜑 → (𝑇𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2930  ifcif 4524  {cpr 4626   I cid 5569  cres 5674  cfv 6542  pmTrspcpmtr 19398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-1o 8483  df-2o 8484  df-en 8961  df-pmtr 19399
This theorem is referenced by:  reprpmtf1o  34314
  Copyright terms: Public domain W3C validator