| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmtridfv2 | Structured version Visualization version GIF version | ||
| Description: Value at Y of the transposition of 𝑋 and 𝑌 (understood to be the identity when X = Y ). (Contributed by Thierry Arnoux, 3-Jan-2022.) |
| Ref | Expression |
|---|---|
| pmtridf1o.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| pmtridf1o.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| pmtridf1o.y | ⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| pmtridf1o.t | ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
| Ref | Expression |
|---|---|
| pmtridfv2 | ⊢ (𝜑 → (𝑇‘𝑌) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtridf1o.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐴) | |
| 2 | fvresi 7165 | . . . . 5 ⊢ (𝑌 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑌) = 𝑌) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (( I ↾ 𝐴)‘𝑌) = 𝑌) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (( I ↾ 𝐴)‘𝑌) = 𝑌) |
| 5 | pmtridf1o.t | . . . . 5 ⊢ 𝑇 = if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) | |
| 6 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 7 | 6 | iftrued 4508 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ( I ↾ 𝐴)) |
| 8 | 5, 7 | eqtrid 2782 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑇 = ( I ↾ 𝐴)) |
| 9 | 8 | fveq1d 6878 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑇‘𝑌) = (( I ↾ 𝐴)‘𝑌)) |
| 10 | 4, 9, 6 | 3eqtr4d 2780 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑇‘𝑌) = 𝑋) |
| 11 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) | |
| 12 | 11 | neneqd 2937 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ¬ 𝑋 = 𝑌) |
| 13 | 12 | iffalsed 4511 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → if(𝑋 = 𝑌, ( I ↾ 𝐴), ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
| 14 | 5, 13 | eqtrid 2782 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑇 = ((pmTrsp‘𝐴)‘{𝑋, 𝑌})) |
| 15 | 14 | fveq1d 6878 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑇‘𝑌) = (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌)) |
| 16 | pmtridf1o.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐴 ∈ 𝑉) |
| 18 | pmtridf1o.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝐴) |
| 20 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝐴) |
| 21 | eqid 2735 | . . . . 5 ⊢ (pmTrsp‘𝐴) = (pmTrsp‘𝐴) | |
| 22 | 21 | pmtrprfv2 33099 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ≠ 𝑌)) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌) = 𝑋) |
| 23 | 17, 19, 20, 11, 22 | syl13anc 1374 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (((pmTrsp‘𝐴)‘{𝑋, 𝑌})‘𝑌) = 𝑋) |
| 24 | 15, 23 | eqtrd 2770 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑇‘𝑌) = 𝑋) |
| 25 | 10, 24 | pm2.61dane 3019 | 1 ⊢ (𝜑 → (𝑇‘𝑌) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ifcif 4500 {cpr 4603 I cid 5547 ↾ cres 5656 ‘cfv 6531 pmTrspcpmtr 19422 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-1o 8480 df-2o 8481 df-en 8960 df-pmtr 19423 |
| This theorem is referenced by: reprpmtf1o 34658 |
| Copyright terms: Public domain | W3C validator |